The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/x86/tsc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998-2003 Poul-Henning Kamp
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_compat.h"
   31 #include "opt_clock.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/bus.h>
   35 #include <sys/cpu.h>
   36 #include <sys/limits.h>
   37 #include <sys/malloc.h>
   38 #include <sys/systm.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/time.h>
   41 #include <sys/timetc.h>
   42 #include <sys/kernel.h>
   43 #include <sys/power.h>
   44 #include <sys/smp.h>
   45 #include <sys/vdso.h>
   46 #include <machine/clock.h>
   47 #include <machine/cputypes.h>
   48 #include <machine/md_var.h>
   49 #include <machine/specialreg.h>
   50 #include <x86/vmware.h>
   51 #include <dev/acpica/acpi_hpet.h>
   52 
   53 #include "cpufreq_if.h"
   54 
   55 uint64_t        tsc_freq;
   56 int             tsc_is_invariant;
   57 int             tsc_perf_stat;
   58 
   59 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
   60 
   61 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
   62     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
   63 
   64 #ifdef SMP
   65 int     smp_tsc;
   66 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
   67     "Indicates whether the TSC is safe to use in SMP mode");
   68 
   69 int     smp_tsc_adjust = 0;
   70 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
   71     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
   72 #endif
   73 
   74 static int      tsc_shift = 1;
   75 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
   76     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
   77 
   78 static int      tsc_disabled;
   79 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
   80     "Disable x86 Time Stamp Counter");
   81 
   82 static int      tsc_skip_calibration;
   83 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
   84     &tsc_skip_calibration, 0, "Disable TSC frequency calibration");
   85 
   86 static void tsc_freq_changed(void *arg, const struct cf_level *level,
   87     int status);
   88 static void tsc_freq_changing(void *arg, const struct cf_level *level,
   89     int *status);
   90 static unsigned tsc_get_timecount(struct timecounter *tc);
   91 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
   92 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
   93 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
   94 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
   95 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
   96 static void tsc_levels_changed(void *arg, int unit);
   97 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
   98     struct timecounter *tc);
   99 #ifdef COMPAT_FREEBSD32
  100 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
  101     struct timecounter *tc);
  102 #endif
  103 
  104 static struct timecounter tsc_timecounter = {
  105         .tc_get_timecount =             tsc_get_timecount,
  106         .tc_counter_mask =              ~0u,
  107         .tc_name =                      "TSC",
  108         .tc_quality =                   800,    /* adjusted in code */
  109         .tc_fill_vdso_timehands =       x86_tsc_vdso_timehands,
  110 #ifdef COMPAT_FREEBSD32
  111         .tc_fill_vdso_timehands32 =     x86_tsc_vdso_timehands32,
  112 #endif
  113 };
  114 
  115 static void
  116 tsc_freq_vmware(void)
  117 {
  118         u_int regs[4];
  119 
  120         if (hv_high >= 0x40000010) {
  121                 do_cpuid(0x40000010, regs);
  122                 tsc_freq = regs[0] * 1000;
  123         } else {
  124                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
  125                 if (regs[1] != UINT_MAX)
  126                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
  127         }
  128         tsc_is_invariant = 1;
  129 }
  130 
  131 /*
  132  * Calculate TSC frequency using information from the CPUID leaf 0x15
  133  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
  134  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
  135  * Frequency Information'.  Leaf 0x16 is described in the SDM as
  136  * informational only, but if 0x15 did not work, and TSC calibration
  137  * is disabled, it is the best we can get at all.  It should still be
  138  * an improvement over the parsing of the CPU model name in
  139  * tsc_freq_intel(), when available.
  140  */
  141 static bool
  142 tsc_freq_cpuid(void)
  143 {
  144         u_int regs[4];
  145 
  146         if (cpu_high < 0x15)
  147                 return (false);
  148         do_cpuid(0x15, regs);
  149         if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
  150                 tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0];
  151                 return (true);
  152         }
  153 
  154         if (cpu_high < 0x16)
  155                 return (false);
  156         do_cpuid(0x16, regs);
  157         if (regs[0] != 0) {
  158                 tsc_freq = (uint64_t)regs[0] * 1000000;
  159                 return (true);
  160         }
  161 
  162         return (false);
  163 }
  164 
  165 static void
  166 tsc_freq_intel(void)
  167 {
  168         char brand[48];
  169         u_int regs[4];
  170         uint64_t freq;
  171         char *p;
  172         u_int i;
  173 
  174         /*
  175          * Intel Processor Identification and the CPUID Instruction
  176          * Application Note 485.
  177          * http://www.intel.com/assets/pdf/appnote/241618.pdf
  178          */
  179         if (cpu_exthigh >= 0x80000004) {
  180                 p = brand;
  181                 for (i = 0x80000002; i < 0x80000005; i++) {
  182                         do_cpuid(i, regs);
  183                         memcpy(p, regs, sizeof(regs));
  184                         p += sizeof(regs);
  185                 }
  186                 p = NULL;
  187                 for (i = 0; i < sizeof(brand) - 1; i++)
  188                         if (brand[i] == 'H' && brand[i + 1] == 'z')
  189                                 p = brand + i;
  190                 if (p != NULL) {
  191                         p -= 5;
  192                         switch (p[4]) {
  193                         case 'M':
  194                                 i = 1;
  195                                 break;
  196                         case 'G':
  197                                 i = 1000;
  198                                 break;
  199                         case 'T':
  200                                 i = 1000000;
  201                                 break;
  202                         default:
  203                                 return;
  204                         }
  205 #define C2D(c)  ((c) - '')
  206                         if (p[1] == '.') {
  207                                 freq = C2D(p[0]) * 1000;
  208                                 freq += C2D(p[2]) * 100;
  209                                 freq += C2D(p[3]) * 10;
  210                                 freq *= i * 1000;
  211                         } else {
  212                                 freq = C2D(p[0]) * 1000;
  213                                 freq += C2D(p[1]) * 100;
  214                                 freq += C2D(p[2]) * 10;
  215                                 freq += C2D(p[3]);
  216                                 freq *= i * 1000000;
  217                         }
  218 #undef C2D
  219                         tsc_freq = freq;
  220                 }
  221         }
  222 }
  223 
  224 static void
  225 probe_tsc_freq(void)
  226 {
  227         u_int regs[4];
  228         uint64_t tsc1, tsc2;
  229 
  230         if (cpu_high >= 6) {
  231                 do_cpuid(6, regs);
  232                 if ((regs[2] & CPUID_PERF_STAT) != 0) {
  233                         /*
  234                          * XXX Some emulators expose host CPUID without actual
  235                          * support for these MSRs.  We must test whether they
  236                          * really work.
  237                          */
  238                         wrmsr(MSR_MPERF, 0);
  239                         wrmsr(MSR_APERF, 0);
  240                         DELAY(10);
  241                         if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
  242                                 tsc_perf_stat = 1;
  243                 }
  244         }
  245 
  246         if (vm_guest == VM_GUEST_VMWARE) {
  247                 tsc_freq_vmware();
  248                 return;
  249         }
  250 
  251         switch (cpu_vendor_id) {
  252         case CPU_VENDOR_AMD:
  253                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
  254                     (vm_guest == VM_GUEST_NO &&
  255                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
  256                         tsc_is_invariant = 1;
  257                 if (cpu_feature & CPUID_SSE2) {
  258                         tsc_timecounter.tc_get_timecount =
  259                             tsc_get_timecount_mfence;
  260                 }
  261                 break;
  262         case CPU_VENDOR_INTEL:
  263                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
  264                     (vm_guest == VM_GUEST_NO &&
  265                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
  266                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
  267                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
  268                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
  269                         tsc_is_invariant = 1;
  270                 if (cpu_feature & CPUID_SSE2) {
  271                         tsc_timecounter.tc_get_timecount =
  272                             tsc_get_timecount_lfence;
  273                 }
  274                 break;
  275         case CPU_VENDOR_CENTAUR:
  276                 if (vm_guest == VM_GUEST_NO &&
  277                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
  278                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
  279                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
  280                         tsc_is_invariant = 1;
  281                 if (cpu_feature & CPUID_SSE2) {
  282                         tsc_timecounter.tc_get_timecount =
  283                             tsc_get_timecount_lfence;
  284                 }
  285                 break;
  286         }
  287 
  288         if (tsc_skip_calibration) {
  289                 if (tsc_freq_cpuid())
  290                         ;
  291                 else if (cpu_vendor_id == CPU_VENDOR_INTEL)
  292                         tsc_freq_intel();
  293         } else {
  294                 if (bootverbose)
  295                         printf("Calibrating TSC clock ... ");
  296                 tsc1 = rdtsc();
  297                 DELAY(1000000);
  298                 tsc2 = rdtsc();
  299                 tsc_freq = tsc2 - tsc1;
  300         }
  301         if (bootverbose)
  302                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
  303 }
  304 
  305 void
  306 init_TSC(void)
  307 {
  308 
  309         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
  310                 return;
  311 
  312 #ifdef __i386__
  313         /* The TSC is known to be broken on certain CPUs. */
  314         switch (cpu_vendor_id) {
  315         case CPU_VENDOR_AMD:
  316                 switch (cpu_id & 0xFF0) {
  317                 case 0x500:
  318                         /* K5 Model 0 */
  319                         return;
  320                 }
  321                 break;
  322         case CPU_VENDOR_CENTAUR:
  323                 switch (cpu_id & 0xff0) {
  324                 case 0x540:
  325                         /*
  326                          * http://www.centtech.com/c6_data_sheet.pdf
  327                          *
  328                          * I-12 RDTSC may return incoherent values in EDX:EAX
  329                          * I-13 RDTSC hangs when certain event counters are used
  330                          */
  331                         return;
  332                 }
  333                 break;
  334         case CPU_VENDOR_NSC:
  335                 switch (cpu_id & 0xff0) {
  336                 case 0x540:
  337                         if ((cpu_id & CPUID_STEPPING) == 0)
  338                                 return;
  339                         break;
  340                 }
  341                 break;
  342         }
  343 #endif
  344                 
  345         probe_tsc_freq();
  346 
  347         /*
  348          * Inform CPU accounting about our boot-time clock rate.  This will
  349          * be updated if someone loads a cpufreq driver after boot that
  350          * discovers a new max frequency.
  351          */
  352         if (tsc_freq != 0)
  353                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
  354 
  355         if (tsc_is_invariant)
  356                 return;
  357 
  358         /* Register to find out about changes in CPU frequency. */
  359         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
  360             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
  361         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
  362             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
  363         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
  364             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
  365 }
  366 
  367 #ifdef SMP
  368 
  369 /*
  370  * RDTSC is not a serializing instruction, and does not drain
  371  * instruction stream, so we need to drain the stream before executing
  372  * it.  It could be fixed by use of RDTSCP, except the instruction is
  373  * not available everywhere.
  374  *
  375  * Use CPUID for draining in the boot-time SMP constistency test.  The
  376  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
  377  * and VIA) when SSE2 is present, and nothing on older machines which
  378  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
  379  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
  380  *
  381  * Do not use do_cpuid(), since we do not need CPUID results, which
  382  * have to be written into memory with do_cpuid().
  383  */
  384 #define TSC_READ(x)                                                     \
  385 static void                                                             \
  386 tsc_read_##x(void *arg)                                                 \
  387 {                                                                       \
  388         uint64_t *tsc = arg;                                            \
  389         u_int cpu = PCPU_GET(cpuid);                                    \
  390                                                                         \
  391         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
  392         tsc[cpu * 3 + x] = rdtsc();                                     \
  393 }
  394 TSC_READ(0)
  395 TSC_READ(1)
  396 TSC_READ(2)
  397 #undef TSC_READ
  398 
  399 #define N       1000
  400 
  401 static void
  402 comp_smp_tsc(void *arg)
  403 {
  404         uint64_t *tsc;
  405         int64_t d1, d2;
  406         u_int cpu = PCPU_GET(cpuid);
  407         u_int i, j, size;
  408 
  409         size = (mp_maxid + 1) * 3;
  410         for (i = 0, tsc = arg; i < N; i++, tsc += size)
  411                 CPU_FOREACH(j) {
  412                         if (j == cpu)
  413                                 continue;
  414                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
  415                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
  416                         if (d1 <= 0 || d2 <= 0) {
  417                                 smp_tsc = 0;
  418                                 return;
  419                         }
  420                 }
  421 }
  422 
  423 static void
  424 adj_smp_tsc(void *arg)
  425 {
  426         uint64_t *tsc;
  427         int64_t d, min, max;
  428         u_int cpu = PCPU_GET(cpuid);
  429         u_int first, i, size;
  430 
  431         first = CPU_FIRST();
  432         if (cpu == first)
  433                 return;
  434         min = INT64_MIN;
  435         max = INT64_MAX;
  436         size = (mp_maxid + 1) * 3;
  437         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
  438                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
  439                 if (d > min)
  440                         min = d;
  441                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
  442                 if (d > min)
  443                         min = d;
  444                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
  445                 if (d < max)
  446                         max = d;
  447                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
  448                 if (d < max)
  449                         max = d;
  450         }
  451         if (min > max)
  452                 return;
  453         d = min / 2 + max / 2;
  454         __asm __volatile (
  455                 "movl $0x10, %%ecx\n\t"
  456                 "rdmsr\n\t"
  457                 "addl %%edi, %%eax\n\t"
  458                 "adcl %%esi, %%edx\n\t"
  459                 "wrmsr\n"
  460                 : /* No output */
  461                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
  462                 : "ax", "cx", "dx", "cc"
  463         );
  464 }
  465 
  466 static int
  467 test_tsc(int adj_max_count)
  468 {
  469         uint64_t *data, *tsc;
  470         u_int i, size, adj;
  471 
  472         if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
  473                 return (-100);
  474         size = (mp_maxid + 1) * 3;
  475         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
  476         adj = 0;
  477 retry:
  478         for (i = 0, tsc = data; i < N; i++, tsc += size)
  479                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
  480         smp_tsc = 1;    /* XXX */
  481         smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
  482             smp_no_rendezvous_barrier, data);
  483         if (!smp_tsc && adj < adj_max_count) {
  484                 adj++;
  485                 smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
  486                     smp_no_rendezvous_barrier, data);
  487                 goto retry;
  488         }
  489         free(data, M_TEMP);
  490         if (bootverbose)
  491                 printf("SMP: %sed TSC synchronization test%s\n",
  492                     smp_tsc ? "pass" : "fail", 
  493                     adj > 0 ? " after adjustment" : "");
  494         if (smp_tsc && tsc_is_invariant) {
  495                 switch (cpu_vendor_id) {
  496                 case CPU_VENDOR_AMD:
  497                         /*
  498                          * Processor Programming Reference (PPR) for AMD
  499                          * Family 17h states that the TSC uses a common
  500                          * reference for all sockets, cores and threads.
  501                          */
  502                         if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
  503                                 return (1000);
  504                         /*
  505                          * Starting with Family 15h processors, TSC clock
  506                          * source is in the north bridge.  Check whether
  507                          * we have a single-socket/multi-core platform.
  508                          * XXX Need more work for complex cases.
  509                          */
  510                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
  511                             (amd_feature2 & AMDID2_CMP) == 0 ||
  512                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
  513                                 break;
  514                         return (1000);
  515                 case CPU_VENDOR_INTEL:
  516                         /*
  517                          * XXX Assume Intel platforms have synchronized TSCs.
  518                          */
  519                         return (1000);
  520                 }
  521                 return (800);
  522         }
  523         return (-100);
  524 }
  525 
  526 #undef N
  527 
  528 #endif /* SMP */
  529 
  530 static void
  531 init_TSC_tc(void)
  532 {
  533         uint64_t max_freq;
  534         int shift;
  535 
  536         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
  537                 return;
  538 
  539         /*
  540          * Limit timecounter frequency to fit in an int and prevent it from
  541          * overflowing too fast.
  542          */
  543         max_freq = UINT_MAX;
  544 
  545         /*
  546          * We can not use the TSC if we support APM.  Precise timekeeping
  547          * on an APM'ed machine is at best a fools pursuit, since 
  548          * any and all of the time spent in various SMM code can't 
  549          * be reliably accounted for.  Reading the RTC is your only
  550          * source of reliable time info.  The i8254 loses too, of course,
  551          * but we need to have some kind of time...
  552          * We don't know at this point whether APM is going to be used
  553          * or not, nor when it might be activated.  Play it safe.
  554          */
  555         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
  556                 tsc_timecounter.tc_quality = -1000;
  557                 if (bootverbose)
  558                         printf("TSC timecounter disabled: APM enabled.\n");
  559                 goto init;
  560         }
  561 
  562         /*
  563          * Intel CPUs without a C-state invariant TSC can stop the TSC
  564          * in either C2 or C3.  Disable use of C2 and C3 while using
  565          * the TSC as the timecounter.  The timecounter can be changed
  566          * to enable C2 and C3.
  567          *
  568          * Note that the TSC is used as the cputicker for computing
  569          * thread runtime regardless of the timecounter setting, so
  570          * using an alternate timecounter and enabling C2 or C3 can
  571          * result incorrect runtimes for kernel idle threads (but not
  572          * for any non-idle threads).
  573          */
  574         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
  575             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
  576                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
  577                 if (bootverbose)
  578                         printf("TSC timecounter disables C2 and C3.\n");
  579         }
  580 
  581         /*
  582          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
  583          * are synchronized.  If the user is sure that the system has
  584          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
  585          * non-zero value.  The TSC seems unreliable in virtualized SMP
  586          * environments, so it is set to a negative quality in those cases.
  587          */
  588 #ifdef SMP
  589         if (mp_ncpus > 1)
  590                 tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
  591         else
  592 #endif /* SMP */
  593         if (tsc_is_invariant)
  594                 tsc_timecounter.tc_quality = 1000;
  595         max_freq >>= tsc_shift;
  596 
  597 init:
  598         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
  599                 ;
  600         if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
  601                 if (cpu_vendor_id == CPU_VENDOR_AMD) {
  602                         tsc_timecounter.tc_get_timecount = shift > 0 ?
  603                             tsc_get_timecount_low_mfence :
  604                             tsc_get_timecount_mfence;
  605                 } else {
  606                         tsc_timecounter.tc_get_timecount = shift > 0 ?
  607                             tsc_get_timecount_low_lfence :
  608                             tsc_get_timecount_lfence;
  609                 }
  610         } else {
  611                 tsc_timecounter.tc_get_timecount = shift > 0 ?
  612                     tsc_get_timecount_low : tsc_get_timecount;
  613         }
  614         if (shift > 0) {
  615                 tsc_timecounter.tc_name = "TSC-low";
  616                 if (bootverbose)
  617                         printf("TSC timecounter discards lower %d bit(s)\n",
  618                             shift);
  619         }
  620         if (tsc_freq != 0) {
  621                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
  622                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
  623                 tc_init(&tsc_timecounter);
  624         }
  625 }
  626 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
  627 
  628 void
  629 resume_TSC(void)
  630 {
  631 #ifdef SMP
  632         int quality;
  633 
  634         /* If TSC was not good on boot, it is unlikely to become good now. */
  635         if (tsc_timecounter.tc_quality < 0)
  636                 return;
  637         /* Nothing to do with UP. */
  638         if (mp_ncpus < 2)
  639                 return;
  640 
  641         /*
  642          * If TSC was good, a single synchronization should be enough,
  643          * but honour smp_tsc_adjust if it's set.
  644          */
  645         quality = test_tsc(MAX(smp_tsc_adjust, 1));
  646         if (quality != tsc_timecounter.tc_quality) {
  647                 printf("TSC timecounter quality changed: %d -> %d\n",
  648                     tsc_timecounter.tc_quality, quality);
  649                 tsc_timecounter.tc_quality = quality;
  650         }
  651 #endif /* SMP */
  652 }
  653 
  654 /*
  655  * When cpufreq levels change, find out about the (new) max frequency.  We
  656  * use this to update CPU accounting in case it got a lower estimate at boot.
  657  */
  658 static void
  659 tsc_levels_changed(void *arg, int unit)
  660 {
  661         device_t cf_dev;
  662         struct cf_level *levels;
  663         int count, error;
  664         uint64_t max_freq;
  665 
  666         /* Only use values from the first CPU, assuming all are equal. */
  667         if (unit != 0)
  668                 return;
  669 
  670         /* Find the appropriate cpufreq device instance. */
  671         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
  672         if (cf_dev == NULL) {
  673                 printf("tsc_levels_changed() called but no cpufreq device?\n");
  674                 return;
  675         }
  676 
  677         /* Get settings from the device and find the max frequency. */
  678         count = 64;
  679         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
  680         if (levels == NULL)
  681                 return;
  682         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
  683         if (error == 0 && count != 0) {
  684                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
  685                 set_cputicker(rdtsc, max_freq, 1);
  686         } else
  687                 printf("tsc_levels_changed: no max freq found\n");
  688         free(levels, M_TEMP);
  689 }
  690 
  691 /*
  692  * If the TSC timecounter is in use, veto the pending change.  It may be
  693  * possible in the future to handle a dynamically-changing timecounter rate.
  694  */
  695 static void
  696 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
  697 {
  698 
  699         if (*status != 0 || timecounter != &tsc_timecounter)
  700                 return;
  701 
  702         printf("timecounter TSC must not be in use when "
  703             "changing frequencies; change denied\n");
  704         *status = EBUSY;
  705 }
  706 
  707 /* Update TSC freq with the value indicated by the caller. */
  708 static void
  709 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
  710 {
  711         uint64_t freq;
  712 
  713         /* If there was an error during the transition, don't do anything. */
  714         if (tsc_disabled || status != 0)
  715                 return;
  716 
  717         /* Total setting for this level gives the new frequency in MHz. */
  718         freq = (uint64_t)level->total_set.freq * 1000000;
  719         atomic_store_rel_64(&tsc_freq, freq);
  720         tsc_timecounter.tc_frequency =
  721             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
  722 }
  723 
  724 static int
  725 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
  726 {
  727         int error;
  728         uint64_t freq;
  729 
  730         freq = atomic_load_acq_64(&tsc_freq);
  731         if (freq == 0)
  732                 return (EOPNOTSUPP);
  733         error = sysctl_handle_64(oidp, &freq, 0, req);
  734         if (error == 0 && req->newptr != NULL) {
  735                 atomic_store_rel_64(&tsc_freq, freq);
  736                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
  737                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
  738         }
  739         return (error);
  740 }
  741 
  742 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
  743     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
  744 
  745 static u_int
  746 tsc_get_timecount(struct timecounter *tc __unused)
  747 {
  748 
  749         return (rdtsc32());
  750 }
  751 
  752 static inline u_int
  753 tsc_get_timecount_low(struct timecounter *tc)
  754 {
  755         uint32_t rv;
  756 
  757         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
  758             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
  759         return (rv);
  760 }
  761 
  762 static u_int
  763 tsc_get_timecount_lfence(struct timecounter *tc __unused)
  764 {
  765 
  766         lfence();
  767         return (rdtsc32());
  768 }
  769 
  770 static u_int
  771 tsc_get_timecount_low_lfence(struct timecounter *tc)
  772 {
  773 
  774         lfence();
  775         return (tsc_get_timecount_low(tc));
  776 }
  777 
  778 static u_int
  779 tsc_get_timecount_mfence(struct timecounter *tc __unused)
  780 {
  781 
  782         mfence();
  783         return (rdtsc32());
  784 }
  785 
  786 static u_int
  787 tsc_get_timecount_low_mfence(struct timecounter *tc)
  788 {
  789 
  790         mfence();
  791         return (tsc_get_timecount_low(tc));
  792 }
  793 
  794 static uint32_t
  795 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
  796 {
  797 
  798         vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
  799         vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
  800         vdso_th->th_x86_hpet_idx = 0xffffffff;
  801         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
  802         return (1);
  803 }
  804 
  805 #ifdef COMPAT_FREEBSD32
  806 static uint32_t
  807 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
  808     struct timecounter *tc)
  809 {
  810 
  811         vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
  812         vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
  813         vdso_th32->th_x86_hpet_idx = 0xffffffff;
  814         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
  815         return (1);
  816 }
  817 #endif

Cache object: df352d188e1e663bb9880380fc2934e2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.