FreeBSD/Linux Kernel Cross Reference
sys/x86/x86/x86_mem.c
1 /*-
2 * Copyright (c) 1999 Michael Smith <msmith@freebsd.org>
3 * Copyright (c) 2017 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by Konstantin Belousov
7 * under sponsorship from the FreeBSD Foundation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/memrange.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45
46 #include <machine/cputypes.h>
47 #include <machine/md_var.h>
48 #include <machine/specialreg.h>
49
50 /*
51 * Pentium Pro+ memory range operations
52 *
53 * This code will probably be impenetrable without reference to the
54 * Intel Pentium Pro documentation or x86-64 programmers manual vol 2.
55 */
56
57 static char *mem_owner_bios = "BIOS";
58
59 #define MR686_FIXMTRR (1<<0)
60
61 #define mrwithin(mr, a) \
62 (((a) >= (mr)->mr_base) && ((a) < ((mr)->mr_base + (mr)->mr_len)))
63 #define mroverlap(mra, mrb) \
64 (mrwithin(mra, mrb->mr_base) || mrwithin(mrb, mra->mr_base))
65
66 #define mrvalid(base, len) \
67 ((!(base & ((1 << 12) - 1))) && /* base is multiple of 4k */ \
68 ((len) >= (1 << 12)) && /* length is >= 4k */ \
69 powerof2((len)) && /* ... and power of two */ \
70 !((base) & ((len) - 1))) /* range is not discontiuous */
71
72 #define mrcopyflags(curr, new) \
73 (((curr) & ~MDF_ATTRMASK) | ((new) & MDF_ATTRMASK))
74
75 static int mtrrs_disabled;
76 SYSCTL_INT(_machdep, OID_AUTO, disable_mtrrs, CTLFLAG_RDTUN,
77 &mtrrs_disabled, 0,
78 "Disable MTRRs.");
79
80 static void x86_mrinit(struct mem_range_softc *sc);
81 static int x86_mrset(struct mem_range_softc *sc,
82 struct mem_range_desc *mrd, int *arg);
83 static void x86_mrAPinit(struct mem_range_softc *sc);
84 static void x86_mrreinit(struct mem_range_softc *sc);
85
86 static struct mem_range_ops x86_mrops = {
87 x86_mrinit,
88 x86_mrset,
89 x86_mrAPinit,
90 x86_mrreinit
91 };
92
93 /* XXX for AP startup hook */
94 static u_int64_t mtrrcap, mtrrdef;
95
96 /* The bitmask for the PhysBase and PhysMask fields of the variable MTRRs. */
97 static u_int64_t mtrr_physmask;
98
99 static struct mem_range_desc *mem_range_match(struct mem_range_softc *sc,
100 struct mem_range_desc *mrd);
101 static void x86_mrfetch(struct mem_range_softc *sc);
102 static int x86_mtrrtype(int flags);
103 static int x86_mrt2mtrr(int flags, int oldval);
104 static int x86_mtrrconflict(int flag1, int flag2);
105 static void x86_mrstore(struct mem_range_softc *sc);
106 static void x86_mrstoreone(void *arg);
107 static struct mem_range_desc *x86_mtrrfixsearch(struct mem_range_softc *sc,
108 u_int64_t addr);
109 static int x86_mrsetlow(struct mem_range_softc *sc,
110 struct mem_range_desc *mrd, int *arg);
111 static int x86_mrsetvariable(struct mem_range_softc *sc,
112 struct mem_range_desc *mrd, int *arg);
113
114 /* ia32 MTRR type to memory range type conversion */
115 static int x86_mtrrtomrt[] = {
116 MDF_UNCACHEABLE,
117 MDF_WRITECOMBINE,
118 MDF_UNKNOWN,
119 MDF_UNKNOWN,
120 MDF_WRITETHROUGH,
121 MDF_WRITEPROTECT,
122 MDF_WRITEBACK
123 };
124
125 #define MTRRTOMRTLEN nitems(x86_mtrrtomrt)
126
127 static int
128 x86_mtrr2mrt(int val)
129 {
130
131 if (val < 0 || val >= MTRRTOMRTLEN)
132 return (MDF_UNKNOWN);
133 return (x86_mtrrtomrt[val]);
134 }
135
136 /*
137 * x86 MTRR conflicts. Writeback and uncachable may overlap.
138 */
139 static int
140 x86_mtrrconflict(int flag1, int flag2)
141 {
142
143 flag1 &= MDF_ATTRMASK;
144 flag2 &= MDF_ATTRMASK;
145 if ((flag1 & MDF_UNKNOWN) || (flag2 & MDF_UNKNOWN))
146 return (1);
147 if (flag1 == flag2 ||
148 (flag1 == MDF_WRITEBACK && flag2 == MDF_UNCACHEABLE) ||
149 (flag2 == MDF_WRITEBACK && flag1 == MDF_UNCACHEABLE))
150 return (0);
151 return (1);
152 }
153
154 /*
155 * Look for an exactly-matching range.
156 */
157 static struct mem_range_desc *
158 mem_range_match(struct mem_range_softc *sc, struct mem_range_desc *mrd)
159 {
160 struct mem_range_desc *cand;
161 int i;
162
163 for (i = 0, cand = sc->mr_desc; i < sc->mr_ndesc; i++, cand++)
164 if ((cand->mr_base == mrd->mr_base) &&
165 (cand->mr_len == mrd->mr_len))
166 return (cand);
167 return (NULL);
168 }
169
170 /*
171 * Ensure that the direct map region does not contain any mappings
172 * that span MTRRs of different types. However, the fixed MTRRs can
173 * be ignored, because a large page mapping the first 1 MB of physical
174 * memory is a special case that the processor handles. Invalidate
175 * any old TLB entries that might hold inconsistent memory type
176 * information.
177 */
178 static void
179 x86_mr_split_dmap(struct mem_range_softc *sc __unused)
180 {
181 #ifdef __amd64__
182 struct mem_range_desc *mrd;
183 int i;
184
185 i = (sc->mr_cap & MR686_FIXMTRR) ? MTRR_N64K + MTRR_N16K + MTRR_N4K : 0;
186 mrd = sc->mr_desc + i;
187 for (; i < sc->mr_ndesc; i++, mrd++) {
188 if ((mrd->mr_flags & (MDF_ACTIVE | MDF_BOGUS)) == MDF_ACTIVE)
189 pmap_demote_DMAP(mrd->mr_base, mrd->mr_len, TRUE);
190 }
191 #endif
192 }
193
194 /*
195 * Fetch the current mtrr settings from the current CPU (assumed to
196 * all be in sync in the SMP case). Note that if we are here, we
197 * assume that MTRRs are enabled, and we may or may not have fixed
198 * MTRRs.
199 */
200 static void
201 x86_mrfetch(struct mem_range_softc *sc)
202 {
203 struct mem_range_desc *mrd;
204 u_int64_t msrv;
205 int i, j, msr;
206
207 mrd = sc->mr_desc;
208
209 /* Get fixed-range MTRRs. */
210 if (sc->mr_cap & MR686_FIXMTRR) {
211 msr = MSR_MTRR64kBase;
212 for (i = 0; i < (MTRR_N64K / 8); i++, msr++) {
213 msrv = rdmsr(msr);
214 for (j = 0; j < 8; j++, mrd++) {
215 mrd->mr_flags =
216 (mrd->mr_flags & ~MDF_ATTRMASK) |
217 x86_mtrr2mrt(msrv & 0xff) | MDF_ACTIVE;
218 if (mrd->mr_owner[0] == 0)
219 strcpy(mrd->mr_owner, mem_owner_bios);
220 msrv = msrv >> 8;
221 }
222 }
223 msr = MSR_MTRR16kBase;
224 for (i = 0; i < MTRR_N16K / 8; i++, msr++) {
225 msrv = rdmsr(msr);
226 for (j = 0; j < 8; j++, mrd++) {
227 mrd->mr_flags =
228 (mrd->mr_flags & ~MDF_ATTRMASK) |
229 x86_mtrr2mrt(msrv & 0xff) | MDF_ACTIVE;
230 if (mrd->mr_owner[0] == 0)
231 strcpy(mrd->mr_owner, mem_owner_bios);
232 msrv = msrv >> 8;
233 }
234 }
235 msr = MSR_MTRR4kBase;
236 for (i = 0; i < MTRR_N4K / 8; i++, msr++) {
237 msrv = rdmsr(msr);
238 for (j = 0; j < 8; j++, mrd++) {
239 mrd->mr_flags =
240 (mrd->mr_flags & ~MDF_ATTRMASK) |
241 x86_mtrr2mrt(msrv & 0xff) | MDF_ACTIVE;
242 if (mrd->mr_owner[0] == 0)
243 strcpy(mrd->mr_owner, mem_owner_bios);
244 msrv = msrv >> 8;
245 }
246 }
247 }
248
249 /* Get remainder which must be variable MTRRs. */
250 msr = MSR_MTRRVarBase;
251 for (; mrd - sc->mr_desc < sc->mr_ndesc; msr += 2, mrd++) {
252 msrv = rdmsr(msr);
253 mrd->mr_flags = (mrd->mr_flags & ~MDF_ATTRMASK) |
254 x86_mtrr2mrt(msrv & MTRR_PHYSBASE_TYPE);
255 mrd->mr_base = msrv & mtrr_physmask;
256 msrv = rdmsr(msr + 1);
257 mrd->mr_flags = (msrv & MTRR_PHYSMASK_VALID) ?
258 (mrd->mr_flags | MDF_ACTIVE) :
259 (mrd->mr_flags & ~MDF_ACTIVE);
260
261 /* Compute the range from the mask. Ick. */
262 mrd->mr_len = (~(msrv & mtrr_physmask) &
263 (mtrr_physmask | 0xfff)) + 1;
264 if (!mrvalid(mrd->mr_base, mrd->mr_len))
265 mrd->mr_flags |= MDF_BOGUS;
266
267 /* If unclaimed and active, must be the BIOS. */
268 if ((mrd->mr_flags & MDF_ACTIVE) && (mrd->mr_owner[0] == 0))
269 strcpy(mrd->mr_owner, mem_owner_bios);
270 }
271 }
272
273 /*
274 * Return the MTRR memory type matching a region's flags
275 */
276 static int
277 x86_mtrrtype(int flags)
278 {
279 int i;
280
281 flags &= MDF_ATTRMASK;
282
283 for (i = 0; i < MTRRTOMRTLEN; i++) {
284 if (x86_mtrrtomrt[i] == MDF_UNKNOWN)
285 continue;
286 if (flags == x86_mtrrtomrt[i])
287 return (i);
288 }
289 return (-1);
290 }
291
292 static int
293 x86_mrt2mtrr(int flags, int oldval)
294 {
295 int val;
296
297 if ((val = x86_mtrrtype(flags)) == -1)
298 return (oldval & 0xff);
299 return (val & 0xff);
300 }
301
302 /*
303 * Update running CPU(s) MTRRs to match the ranges in the descriptor
304 * list.
305 *
306 * Must be called with interrupts enabled.
307 */
308 static void
309 x86_mrstore(struct mem_range_softc *sc)
310 {
311
312 smp_rendezvous(NULL, x86_mrstoreone, NULL, sc);
313 }
314
315 /*
316 * Update the current CPU's MTRRs with those represented in the
317 * descriptor list. Note that we do this wholesale rather than just
318 * stuffing one entry; this is simpler (but slower, of course).
319 */
320 static void
321 x86_mrstoreone(void *arg)
322 {
323 struct mem_range_softc *sc = arg;
324 struct mem_range_desc *mrd;
325 u_int64_t omsrv, msrv;
326 int i, j, msr;
327 u_long cr0, cr4;
328
329 mrd = sc->mr_desc;
330
331 critical_enter();
332
333 /* Disable PGE. */
334 cr4 = rcr4();
335 load_cr4(cr4 & ~CR4_PGE);
336
337 /* Disable caches (CD = 1, NW = 0). */
338 cr0 = rcr0();
339 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
340
341 /* Flushes caches and TLBs. */
342 wbinvd();
343 invltlb();
344
345 /* Disable MTRRs (E = 0). */
346 wrmsr(MSR_MTRRdefType, rdmsr(MSR_MTRRdefType) & ~MTRR_DEF_ENABLE);
347
348 /* Set fixed-range MTRRs. */
349 if (sc->mr_cap & MR686_FIXMTRR) {
350 msr = MSR_MTRR64kBase;
351 for (i = 0; i < MTRR_N64K / 8; i++, msr++) {
352 msrv = 0;
353 omsrv = rdmsr(msr);
354 for (j = 7; j >= 0; j--) {
355 msrv = msrv << 8;
356 msrv |= x86_mrt2mtrr((mrd + j)->mr_flags,
357 omsrv >> (j * 8));
358 }
359 wrmsr(msr, msrv);
360 mrd += 8;
361 }
362 msr = MSR_MTRR16kBase;
363 for (i = 0; i < MTRR_N16K / 8; i++, msr++) {
364 msrv = 0;
365 omsrv = rdmsr(msr);
366 for (j = 7; j >= 0; j--) {
367 msrv = msrv << 8;
368 msrv |= x86_mrt2mtrr((mrd + j)->mr_flags,
369 omsrv >> (j * 8));
370 }
371 wrmsr(msr, msrv);
372 mrd += 8;
373 }
374 msr = MSR_MTRR4kBase;
375 for (i = 0; i < MTRR_N4K / 8; i++, msr++) {
376 msrv = 0;
377 omsrv = rdmsr(msr);
378 for (j = 7; j >= 0; j--) {
379 msrv = msrv << 8;
380 msrv |= x86_mrt2mtrr((mrd + j)->mr_flags,
381 omsrv >> (j * 8));
382 }
383 wrmsr(msr, msrv);
384 mrd += 8;
385 }
386 }
387
388 /* Set remainder which must be variable MTRRs. */
389 msr = MSR_MTRRVarBase;
390 for (; mrd - sc->mr_desc < sc->mr_ndesc; msr += 2, mrd++) {
391 /* base/type register */
392 omsrv = rdmsr(msr);
393 if (mrd->mr_flags & MDF_ACTIVE) {
394 msrv = mrd->mr_base & mtrr_physmask;
395 msrv |= x86_mrt2mtrr(mrd->mr_flags, omsrv);
396 } else {
397 msrv = 0;
398 }
399 wrmsr(msr, msrv);
400
401 /* mask/active register */
402 if (mrd->mr_flags & MDF_ACTIVE) {
403 msrv = MTRR_PHYSMASK_VALID |
404 rounddown2(mtrr_physmask, mrd->mr_len);
405 } else {
406 msrv = 0;
407 }
408 wrmsr(msr + 1, msrv);
409 }
410
411 /* Flush caches and TLBs. */
412 wbinvd();
413 invltlb();
414
415 /* Enable MTRRs. */
416 wrmsr(MSR_MTRRdefType, rdmsr(MSR_MTRRdefType) | MTRR_DEF_ENABLE);
417
418 /* Restore caches and PGE. */
419 load_cr0(cr0);
420 load_cr4(cr4);
421
422 critical_exit();
423 }
424
425 /*
426 * Hunt for the fixed MTRR referencing (addr)
427 */
428 static struct mem_range_desc *
429 x86_mtrrfixsearch(struct mem_range_softc *sc, u_int64_t addr)
430 {
431 struct mem_range_desc *mrd;
432 int i;
433
434 for (i = 0, mrd = sc->mr_desc; i < MTRR_N64K + MTRR_N16K + MTRR_N4K;
435 i++, mrd++)
436 if (addr >= mrd->mr_base &&
437 addr < mrd->mr_base + mrd->mr_len)
438 return (mrd);
439 return (NULL);
440 }
441
442 /*
443 * Try to satisfy the given range request by manipulating the fixed
444 * MTRRs that cover low memory.
445 *
446 * Note that we try to be generous here; we'll bloat the range out to
447 * the next higher/lower boundary to avoid the consumer having to know
448 * too much about the mechanisms here.
449 *
450 * XXX note that this will have to be updated when we start supporting
451 * "busy" ranges.
452 */
453 static int
454 x86_mrsetlow(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg)
455 {
456 struct mem_range_desc *first_md, *last_md, *curr_md;
457
458 /* Range check. */
459 if ((first_md = x86_mtrrfixsearch(sc, mrd->mr_base)) == NULL ||
460 (last_md = x86_mtrrfixsearch(sc, mrd->mr_base + mrd->mr_len - 1))
461 == NULL)
462 return (EINVAL);
463
464 /* Check that we aren't doing something risky. */
465 if ((mrd->mr_flags & MDF_FORCE) == 0) {
466 for (curr_md = first_md; curr_md <= last_md; curr_md++) {
467 if ((curr_md->mr_flags & MDF_ATTRMASK) == MDF_UNKNOWN)
468 return (EACCES);
469 }
470 }
471
472 /* Set flags, clear set-by-firmware flag. */
473 for (curr_md = first_md; curr_md <= last_md; curr_md++) {
474 curr_md->mr_flags = mrcopyflags(curr_md->mr_flags &
475 ~MDF_FIRMWARE, mrd->mr_flags);
476 bcopy(mrd->mr_owner, curr_md->mr_owner, sizeof(mrd->mr_owner));
477 }
478
479 return (0);
480 }
481
482 /*
483 * Modify/add a variable MTRR to satisfy the request.
484 *
485 * XXX needs to be updated to properly support "busy" ranges.
486 */
487 static int
488 x86_mrsetvariable(struct mem_range_softc *sc, struct mem_range_desc *mrd,
489 int *arg)
490 {
491 struct mem_range_desc *curr_md, *free_md;
492 int i;
493
494 /*
495 * Scan the currently active variable descriptors, look for
496 * one we exactly match (straight takeover) and for possible
497 * accidental overlaps.
498 *
499 * Keep track of the first empty variable descriptor in case
500 * we can't perform a takeover.
501 */
502 i = (sc->mr_cap & MR686_FIXMTRR) ? MTRR_N64K + MTRR_N16K + MTRR_N4K : 0;
503 curr_md = sc->mr_desc + i;
504 free_md = NULL;
505 for (; i < sc->mr_ndesc; i++, curr_md++) {
506 if (curr_md->mr_flags & MDF_ACTIVE) {
507 /* Exact match? */
508 if (curr_md->mr_base == mrd->mr_base &&
509 curr_md->mr_len == mrd->mr_len) {
510
511 /* Whoops, owned by someone. */
512 if (curr_md->mr_flags & MDF_BUSY)
513 return (EBUSY);
514
515 /* Check that we aren't doing something risky */
516 if (!(mrd->mr_flags & MDF_FORCE) &&
517 (curr_md->mr_flags & MDF_ATTRMASK) ==
518 MDF_UNKNOWN)
519 return (EACCES);
520
521 /* Ok, just hijack this entry. */
522 free_md = curr_md;
523 break;
524 }
525
526 /* Non-exact overlap? */
527 if (mroverlap(curr_md, mrd)) {
528 /* Between conflicting region types? */
529 if (x86_mtrrconflict(curr_md->mr_flags,
530 mrd->mr_flags))
531 return (EINVAL);
532 }
533 } else if (free_md == NULL) {
534 free_md = curr_md;
535 }
536 }
537
538 /* Got somewhere to put it? */
539 if (free_md == NULL)
540 return (ENOSPC);
541
542 /* Set up new descriptor. */
543 free_md->mr_base = mrd->mr_base;
544 free_md->mr_len = mrd->mr_len;
545 free_md->mr_flags = mrcopyflags(MDF_ACTIVE, mrd->mr_flags);
546 bcopy(mrd->mr_owner, free_md->mr_owner, sizeof(mrd->mr_owner));
547 return (0);
548 }
549
550 /*
551 * Handle requests to set memory range attributes by manipulating MTRRs.
552 */
553 static int
554 x86_mrset(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg)
555 {
556 struct mem_range_desc *targ;
557 int error;
558
559 switch (*arg) {
560 case MEMRANGE_SET_UPDATE:
561 /*
562 * Make sure that what's being asked for is even
563 * possible at all.
564 */
565 if (!mrvalid(mrd->mr_base, mrd->mr_len) ||
566 x86_mtrrtype(mrd->mr_flags) == -1)
567 return (EINVAL);
568
569 #define FIXTOP \
570 ((MTRR_N64K * 0x10000) + (MTRR_N16K * 0x4000) + (MTRR_N4K * 0x1000))
571
572 /* Are the "low memory" conditions applicable? */
573 if ((sc->mr_cap & MR686_FIXMTRR) != 0 &&
574 mrd->mr_base + mrd->mr_len <= FIXTOP) {
575 if ((error = x86_mrsetlow(sc, mrd, arg)) != 0)
576 return (error);
577 } else {
578 /* It's time to play with variable MTRRs. */
579 if ((error = x86_mrsetvariable(sc, mrd, arg)) != 0)
580 return (error);
581 }
582 break;
583
584 case MEMRANGE_SET_REMOVE:
585 if ((targ = mem_range_match(sc, mrd)) == NULL)
586 return (ENOENT);
587 if (targ->mr_flags & MDF_FIXACTIVE)
588 return (EPERM);
589 if (targ->mr_flags & MDF_BUSY)
590 return (EBUSY);
591 targ->mr_flags &= ~MDF_ACTIVE;
592 targ->mr_owner[0] = 0;
593 break;
594
595 default:
596 return (EOPNOTSUPP);
597 }
598
599 x86_mr_split_dmap(sc);
600
601 /* Update the hardware. */
602 x86_mrstore(sc);
603
604 /* Refetch to see where we're at. */
605 x86_mrfetch(sc);
606 return (0);
607 }
608
609 /*
610 * Work out how many ranges we support, initialise storage for them,
611 * and fetch the initial settings.
612 */
613 static void
614 x86_mrinit(struct mem_range_softc *sc)
615 {
616 struct mem_range_desc *mrd;
617 int i, nmdesc;
618
619 if (sc->mr_desc != NULL)
620 /* Already initialized. */
621 return;
622
623 nmdesc = 0;
624 mtrrcap = rdmsr(MSR_MTRRcap);
625 mtrrdef = rdmsr(MSR_MTRRdefType);
626
627 /* For now, bail out if MTRRs are not enabled. */
628 if (!(mtrrdef & MTRR_DEF_ENABLE)) {
629 if (bootverbose)
630 printf("CPU supports MTRRs but not enabled\n");
631 return;
632 }
633 nmdesc = mtrrcap & MTRR_CAP_VCNT;
634 if (bootverbose)
635 printf("Pentium Pro MTRR support enabled\n");
636
637 /*
638 * Determine the size of the PhysMask and PhysBase fields in
639 * the variable range MTRRs.
640 */
641 mtrr_physmask = (((uint64_t)1 << cpu_maxphyaddr) - 1) &
642 ~(uint64_t)0xfff;
643
644 /* If fixed MTRRs supported and enabled. */
645 if ((mtrrcap & MTRR_CAP_FIXED) && (mtrrdef & MTRR_DEF_FIXED_ENABLE)) {
646 sc->mr_cap = MR686_FIXMTRR;
647 nmdesc += MTRR_N64K + MTRR_N16K + MTRR_N4K;
648 }
649
650 sc->mr_desc = malloc(nmdesc * sizeof(struct mem_range_desc), M_MEMDESC,
651 M_WAITOK | M_ZERO);
652 sc->mr_ndesc = nmdesc;
653
654 mrd = sc->mr_desc;
655
656 /* Populate the fixed MTRR entries' base/length. */
657 if (sc->mr_cap & MR686_FIXMTRR) {
658 for (i = 0; i < MTRR_N64K; i++, mrd++) {
659 mrd->mr_base = i * 0x10000;
660 mrd->mr_len = 0x10000;
661 mrd->mr_flags = MDF_FIXBASE | MDF_FIXLEN |
662 MDF_FIXACTIVE;
663 }
664 for (i = 0; i < MTRR_N16K; i++, mrd++) {
665 mrd->mr_base = i * 0x4000 + 0x80000;
666 mrd->mr_len = 0x4000;
667 mrd->mr_flags = MDF_FIXBASE | MDF_FIXLEN |
668 MDF_FIXACTIVE;
669 }
670 for (i = 0; i < MTRR_N4K; i++, mrd++) {
671 mrd->mr_base = i * 0x1000 + 0xc0000;
672 mrd->mr_len = 0x1000;
673 mrd->mr_flags = MDF_FIXBASE | MDF_FIXLEN |
674 MDF_FIXACTIVE;
675 }
676 }
677
678 /*
679 * Get current settings, anything set now is considered to
680 * have been set by the firmware. (XXX has something already
681 * played here?)
682 */
683 x86_mrfetch(sc);
684 mrd = sc->mr_desc;
685 for (i = 0; i < sc->mr_ndesc; i++, mrd++) {
686 if (mrd->mr_flags & MDF_ACTIVE)
687 mrd->mr_flags |= MDF_FIRMWARE;
688 }
689
690 x86_mr_split_dmap(sc);
691 }
692
693 /*
694 * Initialise MTRRs on an AP after the BSP has run the init code.
695 */
696 static void
697 x86_mrAPinit(struct mem_range_softc *sc)
698 {
699
700 x86_mrstoreone(sc);
701 wrmsr(MSR_MTRRdefType, mtrrdef);
702 }
703
704 /*
705 * Re-initialise running CPU(s) MTRRs to match the ranges in the descriptor
706 * list.
707 *
708 * Must be called with interrupts enabled.
709 */
710 static void
711 x86_mrreinit(struct mem_range_softc *sc)
712 {
713
714 smp_rendezvous(NULL, (void (*)(void *))x86_mrAPinit, NULL, sc);
715 }
716
717 static void
718 x86_mem_drvinit(void *unused)
719 {
720
721 if (mtrrs_disabled)
722 return;
723 if (!(cpu_feature & CPUID_MTRR))
724 return;
725 mem_range_softc.mr_op = &x86_mrops;
726 x86_mrinit(&mem_range_softc);
727 }
728 SYSINIT(x86memdev, SI_SUB_CPU, SI_ORDER_ANY, x86_mem_drvinit, NULL);
Cache object: 1abae00849ec65f2cc1ae5b15c91fcbe
|