The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/xen/interface/kexec.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2  * kexec.h - Public portion
    3  *
    4  * Permission is hereby granted, free of charge, to any person obtaining a copy
    5  * of this software and associated documentation files (the "Software"), to
    6  * deal in the Software without restriction, including without limitation the
    7  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
    8  * sell copies of the Software, and to permit persons to whom the Software is
    9  * furnished to do so, subject to the following conditions:
   10  *
   11  * The above copyright notice and this permission notice shall be included in
   12  * all copies or substantial portions of the Software.
   13  *
   14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   17  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
   19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   20  * DEALINGS IN THE SOFTWARE.
   21  *
   22  * Xen port written by:
   23  * - Simon 'Horms' Horman <horms@verge.net.au>
   24  * - Magnus Damm <magnus@valinux.co.jp>
   25  */
   26 
   27 #ifndef _XEN_PUBLIC_KEXEC_H
   28 #define _XEN_PUBLIC_KEXEC_H
   29 
   30 
   31 /* This file describes the Kexec / Kdump hypercall interface for Xen.
   32  *
   33  * Kexec under vanilla Linux allows a user to reboot the physical machine
   34  * into a new user-specified kernel. The Xen port extends this idea
   35  * to allow rebooting of the machine from dom0. When kexec for dom0
   36  * is used to reboot,  both the hypervisor and the domains get replaced
   37  * with some other kernel. It is possible to kexec between vanilla
   38  * Linux and Xen and back again. Xen to Xen works well too.
   39  *
   40  * The hypercall interface for kexec can be divided into three main
   41  * types of hypercall operations:
   42  *
   43  * 1) Range information:
   44  *    This is used by the dom0 kernel to ask the hypervisor about various
   45  *    address information. This information is needed to allow kexec-tools
   46  *    to fill in the ELF headers for /proc/vmcore properly.
   47  *
   48  * 2) Load and unload of images:
   49  *    There are no big surprises here, the kexec binary from kexec-tools
   50  *    runs in userspace in dom0. The tool loads/unloads data into the
   51  *    dom0 kernel such as new kernel, initramfs and hypervisor. When
   52  *    loaded the dom0 kernel performs a load hypercall operation, and
   53  *    before releasing all page references the dom0 kernel calls unload.
   54  *
   55  * 3) Kexec operation:
   56  *    This is used to start a previously loaded kernel.
   57  */
   58 
   59 #include "xen.h"
   60 
   61 #if defined(__i386__) || defined(__x86_64__)
   62 #define KEXEC_XEN_NO_PAGES 17
   63 #endif
   64 
   65 /*
   66  * Prototype for this hypercall is:
   67  *  int kexec_op(int cmd, void *args)
   68  * @cmd  == KEXEC_CMD_...
   69  *          KEXEC operation to perform
   70  * @args == Operation-specific extra arguments (NULL if none).
   71  */
   72 
   73 /*
   74  * Kexec supports two types of operation:
   75  * - kexec into a regular kernel, very similar to a standard reboot
   76  *   - KEXEC_TYPE_DEFAULT is used to specify this type
   77  * - kexec into a special "crash kernel", aka kexec-on-panic
   78  *   - KEXEC_TYPE_CRASH is used to specify this type
   79  *   - parts of our system may be broken at kexec-on-panic time
   80  *     - the code should be kept as simple and self-contained as possible
   81  */
   82 
   83 #define KEXEC_TYPE_DEFAULT 0
   84 #define KEXEC_TYPE_CRASH   1
   85 
   86 
   87 /* The kexec implementation for Xen allows the user to load two
   88  * types of kernels, KEXEC_TYPE_DEFAULT and KEXEC_TYPE_CRASH.
   89  * All data needed for a kexec reboot is kept in one xen_kexec_image_t
   90  * per "instance". The data mainly consists of machine address lists to pages
   91  * together with destination addresses. The data in xen_kexec_image_t
   92  * is passed to the "code page" which is one page of code that performs
   93  * the final relocations before jumping to the new kernel.
   94  */
   95 
   96 typedef struct xen_kexec_image {
   97 #if defined(__i386__) || defined(__x86_64__)
   98     unsigned long page_list[KEXEC_XEN_NO_PAGES];
   99 #endif
  100     unsigned long indirection_page;
  101     unsigned long start_address;
  102 } xen_kexec_image_t;
  103 
  104 /*
  105  * Perform kexec having previously loaded a kexec or kdump kernel
  106  * as appropriate.
  107  * type == KEXEC_TYPE_DEFAULT or KEXEC_TYPE_CRASH [in]
  108  *
  109  * Control is transferred to the image entry point with the host in
  110  * the following state.
  111  *
  112  * - The image may be executed on any PCPU and all other PCPUs are
  113  *   stopped.
  114  *
  115  * - Local interrupts are disabled.
  116  *
  117  * - Register values are undefined.
  118  *
  119  * - The image segments have writeable 1:1 virtual to machine
  120  *   mappings.  The location of any page tables is undefined and these
  121  *   page table frames are not be mapped.
  122  */
  123 #define KEXEC_CMD_kexec                 0
  124 typedef struct xen_kexec_exec {
  125     int type;
  126 } xen_kexec_exec_t;
  127 
  128 /*
  129  * Load/Unload kernel image for kexec or kdump.
  130  * type  == KEXEC_TYPE_DEFAULT or KEXEC_TYPE_CRASH [in]
  131  * image == relocation information for kexec (ignored for unload) [in]
  132  */
  133 #define KEXEC_CMD_kexec_load_v1         1 /* obsolete since 0x00040400 */
  134 #define KEXEC_CMD_kexec_unload_v1       2 /* obsolete since 0x00040400 */
  135 typedef struct xen_kexec_load_v1 {
  136     int type;
  137     xen_kexec_image_t image;
  138 } xen_kexec_load_v1_t;
  139 
  140 #define KEXEC_RANGE_MA_CRASH      0 /* machine address and size of crash area */
  141 #define KEXEC_RANGE_MA_XEN        1 /* machine address and size of Xen itself */
  142 #define KEXEC_RANGE_MA_CPU        2 /* machine address and size of a CPU note */
  143 #define KEXEC_RANGE_MA_XENHEAP    3 /* machine address and size of xenheap
  144                                      * Note that although this is adjacent
  145                                      * to Xen it exists in a separate EFI
  146                                      * region on ia64, and thus needs to be
  147                                      * inserted into iomem_machine separately */
  148 #define KEXEC_RANGE_MA_BOOT_PARAM 4 /* Obsolete: machine address and size of
  149                                      * the ia64_boot_param */
  150 #define KEXEC_RANGE_MA_EFI_MEMMAP 5 /* machine address and size of
  151                                      * of the EFI Memory Map */
  152 #define KEXEC_RANGE_MA_VMCOREINFO 6 /* machine address and size of vmcoreinfo */
  153 
  154 /*
  155  * Find the address and size of certain memory areas
  156  * range == KEXEC_RANGE_... [in]
  157  * nr    == physical CPU number (starting from 0) if KEXEC_RANGE_MA_CPU [in]
  158  * size  == number of bytes reserved in window [out]
  159  * start == address of the first byte in the window [out]
  160  */
  161 #define KEXEC_CMD_kexec_get_range       3
  162 typedef struct xen_kexec_range {
  163     int range;
  164     int nr;
  165     unsigned long size;
  166     unsigned long start;
  167 } xen_kexec_range_t;
  168 
  169 #if __XEN_INTERFACE_VERSION__ >= 0x00040400
  170 /*
  171  * A contiguous chunk of a kexec image and it's destination machine
  172  * address.
  173  */
  174 typedef struct xen_kexec_segment {
  175     union {
  176         XEN_GUEST_HANDLE(const_void) h;
  177         uint64_t _pad;
  178     } buf;
  179     uint64_t buf_size;
  180     uint64_t dest_maddr;
  181     uint64_t dest_size;
  182 } xen_kexec_segment_t;
  183 DEFINE_XEN_GUEST_HANDLE(xen_kexec_segment_t);
  184 
  185 /*
  186  * Load a kexec image into memory.
  187  *
  188  * For KEXEC_TYPE_DEFAULT images, the segments may be anywhere in RAM.
  189  * The image is relocated prior to being executed.
  190  *
  191  * For KEXEC_TYPE_CRASH images, each segment of the image must reside
  192  * in the memory region reserved for kexec (KEXEC_RANGE_MA_CRASH) and
  193  * the entry point must be within the image. The caller is responsible
  194  * for ensuring that multiple images do not overlap.
  195  *
  196  * All image segments will be loaded to their destination machine
  197  * addresses prior to being executed.  The trailing portion of any
  198  * segments with a source buffer (from dest_maddr + buf_size to
  199  * dest_maddr + dest_size) will be zeroed.
  200  *
  201  * Segments with no source buffer will be accessible to the image when
  202  * it is executed.
  203  */
  204 
  205 #define KEXEC_CMD_kexec_load 4
  206 typedef struct xen_kexec_load {
  207     uint8_t  type;        /* One of KEXEC_TYPE_* */
  208     uint8_t  _pad;
  209     uint16_t arch;        /* ELF machine type (EM_*). */
  210     uint32_t nr_segments;
  211     union {
  212         XEN_GUEST_HANDLE(xen_kexec_segment_t) h;
  213         uint64_t _pad;
  214     } segments;
  215     uint64_t entry_maddr; /* image entry point machine address. */
  216 } xen_kexec_load_t;
  217 DEFINE_XEN_GUEST_HANDLE(xen_kexec_load_t);
  218 
  219 /*
  220  * Unload a kexec image.
  221  *
  222  * Type must be one of KEXEC_TYPE_DEFAULT or KEXEC_TYPE_CRASH.
  223  */
  224 #define KEXEC_CMD_kexec_unload 5
  225 typedef struct xen_kexec_unload {
  226     uint8_t type;
  227 } xen_kexec_unload_t;
  228 DEFINE_XEN_GUEST_HANDLE(xen_kexec_unload_t);
  229 
  230 /*
  231  * Figure out whether we have an image loaded. A return value of
  232  * zero indicates no image loaded. A return value of one
  233  * indicates an image is loaded. A negative return value
  234  * indicates an error.
  235  *
  236  * Type must be one of KEXEC_TYPE_DEFAULT or KEXEC_TYPE_CRASH.
  237  */
  238 #define KEXEC_CMD_kexec_status 6
  239 typedef struct xen_kexec_status {
  240     uint8_t type;
  241 } xen_kexec_status_t;
  242 DEFINE_XEN_GUEST_HANDLE(xen_kexec_status_t);
  243 
  244 #else /* __XEN_INTERFACE_VERSION__ < 0x00040400 */
  245 
  246 #define KEXEC_CMD_kexec_load KEXEC_CMD_kexec_load_v1
  247 #define KEXEC_CMD_kexec_unload KEXEC_CMD_kexec_unload_v1
  248 #define xen_kexec_load xen_kexec_load_v1
  249 #define xen_kexec_load_t xen_kexec_load_v1_t
  250 
  251 #endif
  252 
  253 #endif /* _XEN_PUBLIC_KEXEC_H */
  254 
  255 /*
  256  * Local variables:
  257  * mode: C
  258  * c-file-style: "BSD"
  259  * c-basic-offset: 4
  260  * tab-width: 4
  261  * indent-tabs-mode: nil
  262  * End:
  263  */

Cache object: c2fa156e63ee7fa587a742659c8b949b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.