The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/xen/interface/xen.h

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2  * xen.h
    3  * 
    4  * Guest OS interface to Xen.
    5  * 
    6  * Permission is hereby granted, free of charge, to any person obtaining a copy
    7  * of this software and associated documentation files (the "Software"), to
    8  * deal in the Software without restriction, including without limitation the
    9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
   10  * sell copies of the Software, and to permit persons to whom the Software is
   11  * furnished to do so, subject to the following conditions:
   12  *
   13  * The above copyright notice and this permission notice shall be included in
   14  * all copies or substantial portions of the Software.
   15  *
   16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
   21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   22  * DEALINGS IN THE SOFTWARE.
   23  *
   24  * Copyright (c) 2004, K A Fraser
   25  */
   26 
   27 #ifndef __XEN_PUBLIC_XEN_H__
   28 #define __XEN_PUBLIC_XEN_H__
   29 
   30 #include "xen-compat.h"
   31 
   32 #if defined(__i386__) || defined(__x86_64__)
   33 #include "arch-x86/xen.h"
   34 #elif defined(__ia64__)
   35 #include "arch-ia64.h"
   36 #elif defined(__arm__)
   37 #include "arch-arm.h"
   38 #else
   39 #error "Unsupported architecture"
   40 #endif
   41 
   42 #ifndef __ASSEMBLY__
   43 /* Guest handles for primitive C types. */
   44 DEFINE_XEN_GUEST_HANDLE(char);
   45 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
   46 DEFINE_XEN_GUEST_HANDLE(int);
   47 __DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
   48 DEFINE_XEN_GUEST_HANDLE(long);
   49 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
   50 DEFINE_XEN_GUEST_HANDLE(void);
   51 
   52 DEFINE_XEN_GUEST_HANDLE(uint64_t);
   53 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
   54 #endif
   55 
   56 /*
   57  * HYPERCALLS
   58  */
   59 
   60 /* `incontents 100 hcalls List of hypercalls
   61  * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
   62  */
   63 
   64 #define __HYPERVISOR_set_trap_table        0
   65 #define __HYPERVISOR_mmu_update            1
   66 #define __HYPERVISOR_set_gdt               2
   67 #define __HYPERVISOR_stack_switch          3
   68 #define __HYPERVISOR_set_callbacks         4
   69 #define __HYPERVISOR_fpu_taskswitch        5
   70 #define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
   71 #define __HYPERVISOR_platform_op           7
   72 #define __HYPERVISOR_set_debugreg          8
   73 #define __HYPERVISOR_get_debugreg          9
   74 #define __HYPERVISOR_update_descriptor    10
   75 #define __HYPERVISOR_memory_op            12
   76 #define __HYPERVISOR_multicall            13
   77 #define __HYPERVISOR_update_va_mapping    14
   78 #define __HYPERVISOR_set_timer_op         15
   79 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
   80 #define __HYPERVISOR_xen_version          17
   81 #define __HYPERVISOR_console_io           18
   82 #define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
   83 #define __HYPERVISOR_grant_table_op       20
   84 #define __HYPERVISOR_vm_assist            21
   85 #define __HYPERVISOR_update_va_mapping_otherdomain 22
   86 #define __HYPERVISOR_iret                 23 /* x86 only */
   87 #define __HYPERVISOR_vcpu_op              24
   88 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
   89 #define __HYPERVISOR_mmuext_op            26
   90 #define __HYPERVISOR_xsm_op               27
   91 #define __HYPERVISOR_nmi_op               28
   92 #define __HYPERVISOR_sched_op             29
   93 #define __HYPERVISOR_callback_op          30
   94 #define __HYPERVISOR_xenoprof_op          31
   95 #define __HYPERVISOR_event_channel_op     32
   96 #define __HYPERVISOR_physdev_op           33
   97 #define __HYPERVISOR_hvm_op               34
   98 #define __HYPERVISOR_sysctl               35
   99 #define __HYPERVISOR_domctl               36
  100 #define __HYPERVISOR_kexec_op             37
  101 #define __HYPERVISOR_tmem_op              38
  102 #define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
  103 
  104 /* Architecture-specific hypercall definitions. */
  105 #define __HYPERVISOR_arch_0               48
  106 #define __HYPERVISOR_arch_1               49
  107 #define __HYPERVISOR_arch_2               50
  108 #define __HYPERVISOR_arch_3               51
  109 #define __HYPERVISOR_arch_4               52
  110 #define __HYPERVISOR_arch_5               53
  111 #define __HYPERVISOR_arch_6               54
  112 #define __HYPERVISOR_arch_7               55
  113 
  114 /* ` } */
  115 
  116 /*
  117  * HYPERCALL COMPATIBILITY.
  118  */
  119 
  120 /* New sched_op hypercall introduced in 0x00030101. */
  121 #if __XEN_INTERFACE_VERSION__ < 0x00030101
  122 #undef __HYPERVISOR_sched_op
  123 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
  124 #endif
  125 
  126 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
  127 #if __XEN_INTERFACE_VERSION__ < 0x00030202
  128 #undef __HYPERVISOR_event_channel_op
  129 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
  130 #undef __HYPERVISOR_physdev_op
  131 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
  132 #endif
  133 
  134 /* New platform_op hypercall introduced in 0x00030204. */
  135 #if __XEN_INTERFACE_VERSION__ < 0x00030204
  136 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
  137 #endif
  138 
  139 /* 
  140  * VIRTUAL INTERRUPTS
  141  * 
  142  * Virtual interrupts that a guest OS may receive from Xen.
  143  * 
  144  * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
  145  * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
  146  * The latter can be allocated only once per guest: they must initially be
  147  * allocated to VCPU0 but can subsequently be re-bound.
  148  */
  149 /* ` enum virq { */
  150 #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
  151 #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
  152 #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
  153 #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
  154 #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
  155 #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
  156 #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
  157 #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
  158 #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
  159 #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
  160 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
  161 #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
  162 
  163 /* Architecture-specific VIRQ definitions. */
  164 #define VIRQ_ARCH_0    16
  165 #define VIRQ_ARCH_1    17
  166 #define VIRQ_ARCH_2    18
  167 #define VIRQ_ARCH_3    19
  168 #define VIRQ_ARCH_4    20
  169 #define VIRQ_ARCH_5    21
  170 #define VIRQ_ARCH_6    22
  171 #define VIRQ_ARCH_7    23
  172 /* ` } */
  173 
  174 #define NR_VIRQS       24
  175 
  176 /*
  177  * ` enum neg_errnoval
  178  * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
  179  * `                       unsigned count, unsigned *done_out,
  180  * `                       unsigned foreigndom)
  181  * `
  182  * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
  183  * @count is the length of the above array.
  184  * @pdone is an output parameter indicating number of completed operations
  185  * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
  186  *                    hypercall invocation. Can be DOMID_SELF.
  187  * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
  188  *                     in this hypercall invocation. The value of this field
  189  *                     (x) encodes the PFD as follows:
  190  *                     x == 0 => PFD == DOMID_SELF
  191  *                     x != 0 => PFD == x - 1
  192  * 
  193  * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
  194  * -------------
  195  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
  196  * Updates an entry in a page table belonging to PFD. If updating an L1 table,
  197  * and the new table entry is valid/present, the mapped frame must belong to
  198  * FD. If attempting to map an I/O page then the caller assumes the privilege
  199  * of the FD.
  200  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
  201  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
  202  * ptr[:2]  -- Machine address of the page-table entry to modify.
  203  * val      -- Value to write.
  204  *
  205  * There also certain implicit requirements when using this hypercall. The
  206  * pages that make up a pagetable must be mapped read-only in the guest.
  207  * This prevents uncontrolled guest updates to the pagetable. Xen strictly
  208  * enforces this, and will disallow any pagetable update which will end up
  209  * mapping pagetable page RW, and will disallow using any writable page as a
  210  * pagetable. In practice it means that when constructing a page table for a
  211  * process, thread, etc, we MUST be very dilligient in following these rules:
  212  *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
  213  *      the entries.
  214  *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
  215  *      or L2).
  216  *  3). Start filling out the PTE table (L1) with the PTE entries. Once
  217  *      done, make sure to set each of those entries to RO (so writeable bit
  218  *      is unset). Once that has been completed, set the PMD (L2) for this
  219  *      PTE table as RO.
  220  *  4). When completed with all of the PMD (L2) entries, and all of them have
  221  *      been set to RO, make sure to set RO the PUD (L3). Do the same
  222  *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
  223  *  5). Now before you can use those pages (so setting the cr3), you MUST also
  224  *      pin them so that the hypervisor can verify the entries. This is done
  225  *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
  226  *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
  227  *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
  228  *      issued.
  229  * For 32-bit guests, the L4 is not used (as there is less pagetables), so
  230  * instead use L3.
  231  * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
  232  * hypercall. Also if so desired the OS can also try to write to the PTE
  233  * and be trapped by the hypervisor (as the PTE entry is RO).
  234  *
  235  * To deallocate the pages, the operations are the reverse of the steps
  236  * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
  237  * pagetable MUST not be in use (meaning that the cr3 is not set to it).
  238  * 
  239  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
  240  * Updates an entry in the machine->pseudo-physical mapping table.
  241  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
  242  *             The frame must belong to the FD, if one is specified.
  243  * val      -- Value to write into the mapping entry.
  244  * 
  245  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
  246  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
  247  * with those in @val.
  248  *
  249  * @val is usually the machine frame number along with some attributes.
  250  * The attributes by default follow the architecture defined bits. Meaning that
  251  * if this is a X86_64 machine and four page table layout is used, the layout
  252  * of val is:
  253  *  - 63 if set means No execute (NX)
  254  *  - 46-13 the machine frame number
  255  *  - 12 available for guest
  256  *  - 11 available for guest
  257  *  - 10 available for guest
  258  *  - 9 available for guest
  259  *  - 8 global
  260  *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
  261  *  - 6 dirty
  262  *  - 5 accessed
  263  *  - 4 page cached disabled
  264  *  - 3 page write through
  265  *  - 2 userspace accessible
  266  *  - 1 writeable
  267  *  - 0 present
  268  *
  269  *  The one bits that does not fit with the default layout is the PAGE_PSE
  270  *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
  271  *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
  272  *  (or 2MB) instead of using the PAGE_PSE bit.
  273  *
  274  *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
  275  *  using it as the Page Attribute Table (PAT) bit - for details on it please
  276  *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
  277  *  pages instead of using MTRRs.
  278  *
  279  *  The PAT MSR is as follow (it is a 64-bit value, each entry is 8 bits):
  280  *             PAT4                 PAT0
  281  *   +---+----+----+----+-----+----+----+
  282  *    WC | WC | WB | UC | UC- | WC | WB |  <= Linux
  283  *   +---+----+----+----+-----+----+----+
  284  *    WC | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
  285  *   +---+----+----+----+-----+----+----+
  286  *    WC | WP | WC | UC | UC- | WT | WB |  <= Xen
  287  *   +---+----+----+----+-----+----+----+
  288  *
  289  *  The lookup of this index table translates to looking up
  290  *  Bit 7, Bit 4, and Bit 3 of val entry:
  291  *
  292  *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
  293  *
  294  *  If all bits are off, then we are using PAT0. If bit 3 turned on,
  295  *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
  296  *
  297  *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
  298  *  that if a guest that follows Linux's PAT setup and would like to set Write
  299  *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
  300  *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
  301  *  caching as:
  302  *
  303  *   WB = none (so PAT0)
  304  *   WC = PWT (bit 3 on)
  305  *   UC = PWT | PCD (bit 3 and 4 are on).
  306  *
  307  * To make it work with Xen, it needs to translate the WC bit as so:
  308  *
  309  *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
  310  *
  311  * And to translate back it would:
  312  *
  313  * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
  314  */
  315 #define MMU_NORMAL_PT_UPDATE      0 /* checked '*ptr = val'. ptr is MA.      */
  316 #define MMU_MACHPHYS_UPDATE       1 /* ptr = MA of frame to modify entry for */
  317 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
  318 
  319 /*
  320  * MMU EXTENDED OPERATIONS
  321  * 
  322  * HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
  323  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
  324  * Where the FD has some effect, it is described below.
  325  * 
  326  * cmd: MMUEXT_(UN)PIN_*_TABLE
  327  * mfn: Machine frame number to be (un)pinned as a p.t. page.
  328  *      The frame must belong to the FD, if one is specified.
  329  * 
  330  * cmd: MMUEXT_NEW_BASEPTR
  331  * mfn: Machine frame number of new page-table base to install in MMU.
  332  * 
  333  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
  334  * mfn: Machine frame number of new page-table base to install in MMU
  335  *      when in user space.
  336  * 
  337  * cmd: MMUEXT_TLB_FLUSH_LOCAL
  338  * No additional arguments. Flushes local TLB.
  339  * 
  340  * cmd: MMUEXT_INVLPG_LOCAL
  341  * linear_addr: Linear address to be flushed from the local TLB.
  342  * 
  343  * cmd: MMUEXT_TLB_FLUSH_MULTI
  344  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
  345  * 
  346  * cmd: MMUEXT_INVLPG_MULTI
  347  * linear_addr: Linear address to be flushed.
  348  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
  349  * 
  350  * cmd: MMUEXT_TLB_FLUSH_ALL
  351  * No additional arguments. Flushes all VCPUs' TLBs.
  352  * 
  353  * cmd: MMUEXT_INVLPG_ALL
  354  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
  355  * 
  356  * cmd: MMUEXT_FLUSH_CACHE
  357  * No additional arguments. Writes back and flushes cache contents.
  358  *
  359  * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
  360  * No additional arguments. Writes back and flushes cache contents
  361  * on all CPUs in the system.
  362  * 
  363  * cmd: MMUEXT_SET_LDT
  364  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
  365  * nr_ents: Number of entries in LDT.
  366  *
  367  * cmd: MMUEXT_CLEAR_PAGE
  368  * mfn: Machine frame number to be cleared.
  369  *
  370  * cmd: MMUEXT_COPY_PAGE
  371  * mfn: Machine frame number of the destination page.
  372  * src_mfn: Machine frame number of the source page.
  373  *
  374  * cmd: MMUEXT_[UN]MARK_SUPER
  375  * mfn: Machine frame number of head of superpage to be [un]marked.
  376  */
  377 #define MMUEXT_PIN_L1_TABLE      0
  378 #define MMUEXT_PIN_L2_TABLE      1
  379 #define MMUEXT_PIN_L3_TABLE      2
  380 #define MMUEXT_PIN_L4_TABLE      3
  381 #define MMUEXT_UNPIN_TABLE       4
  382 #define MMUEXT_NEW_BASEPTR       5
  383 #define MMUEXT_TLB_FLUSH_LOCAL   6
  384 #define MMUEXT_INVLPG_LOCAL      7
  385 #define MMUEXT_TLB_FLUSH_MULTI   8
  386 #define MMUEXT_INVLPG_MULTI      9
  387 #define MMUEXT_TLB_FLUSH_ALL    10
  388 #define MMUEXT_INVLPG_ALL       11
  389 #define MMUEXT_FLUSH_CACHE      12
  390 #define MMUEXT_SET_LDT          13
  391 #define MMUEXT_NEW_USER_BASEPTR 15
  392 #define MMUEXT_CLEAR_PAGE       16
  393 #define MMUEXT_COPY_PAGE        17
  394 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
  395 #define MMUEXT_MARK_SUPER       19
  396 #define MMUEXT_UNMARK_SUPER     20
  397 
  398 #ifndef __ASSEMBLY__
  399 struct mmuext_op {
  400     unsigned int cmd;
  401     union {
  402         /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
  403          * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
  404         xen_pfn_t     mfn;
  405         /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
  406         unsigned long linear_addr;
  407     } arg1;
  408     union {
  409         /* SET_LDT */
  410         unsigned int nr_ents;
  411         /* TLB_FLUSH_MULTI, INVLPG_MULTI */
  412 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
  413         XEN_GUEST_HANDLE(const_void) vcpumask;
  414 #else
  415         const void *vcpumask;
  416 #endif
  417         /* COPY_PAGE */
  418         xen_pfn_t src_mfn;
  419     } arg2;
  420 };
  421 typedef struct mmuext_op mmuext_op_t;
  422 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
  423 #endif
  424 
  425 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
  426 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
  427 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
  428 #define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
  429 #define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
  430 #define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
  431 #define UVMF_FLUSHTYPE_MASK     (3UL<<0)
  432 #define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
  433 #define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
  434 #define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
  435 
  436 /*
  437  * Commands to HYPERVISOR_console_io().
  438  */
  439 #define CONSOLEIO_write         0
  440 #define CONSOLEIO_read          1
  441 
  442 /*
  443  * Commands to HYPERVISOR_vm_assist().
  444  */
  445 #define VMASST_CMD_enable                0
  446 #define VMASST_CMD_disable               1
  447 
  448 /* x86/32 guests: simulate full 4GB segment limits. */
  449 #define VMASST_TYPE_4gb_segments         0
  450 
  451 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
  452 #define VMASST_TYPE_4gb_segments_notify  1
  453 
  454 /*
  455  * x86 guests: support writes to bottom-level PTEs.
  456  * NB1. Page-directory entries cannot be written.
  457  * NB2. Guest must continue to remove all writable mappings of PTEs.
  458  */
  459 #define VMASST_TYPE_writable_pagetables  2
  460 
  461 /* x86/PAE guests: support PDPTs above 4GB. */
  462 #define VMASST_TYPE_pae_extended_cr3     3
  463 
  464 #define MAX_VMASST_TYPE                  3
  465 
  466 #ifndef __ASSEMBLY__
  467 
  468 typedef uint16_t domid_t;
  469 
  470 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
  471 #define DOMID_FIRST_RESERVED (0x7FF0U)
  472 
  473 /* DOMID_SELF is used in certain contexts to refer to oneself. */
  474 #define DOMID_SELF (0x7FF0U)
  475 
  476 /*
  477  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
  478  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
  479  * is useful to ensure that no mappings to the OS's own heap are accidentally
  480  * installed. (e.g., in Linux this could cause havoc as reference counts
  481  * aren't adjusted on the I/O-mapping code path).
  482  * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
  483  * be specified by any calling domain.
  484  */
  485 #define DOMID_IO   (0x7FF1U)
  486 
  487 /*
  488  * DOMID_XEN is used to allow privileged domains to map restricted parts of
  489  * Xen's heap space (e.g., the machine_to_phys table).
  490  * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
  491  * the caller is privileged.
  492  */
  493 #define DOMID_XEN  (0x7FF2U)
  494 
  495 /*
  496  * DOMID_COW is used as the owner of sharable pages */
  497 #define DOMID_COW  (0x7FF3U)
  498 
  499 /* DOMID_INVALID is used to identify pages with unknown owner. */
  500 #define DOMID_INVALID (0x7FF4U)
  501 
  502 /* Idle domain. */
  503 #define DOMID_IDLE (0x7FFFU)
  504 
  505 /*
  506  * Send an array of these to HYPERVISOR_mmu_update().
  507  * NB. The fields are natural pointer/address size for this architecture.
  508  */
  509 struct mmu_update {
  510     uint64_t ptr;       /* Machine address of PTE. */
  511     uint64_t val;       /* New contents of PTE.    */
  512 };
  513 typedef struct mmu_update mmu_update_t;
  514 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
  515 
  516 /*
  517  * Send an array of these to HYPERVISOR_multicall().
  518  * NB. The fields are natural register size for this architecture.
  519  */
  520 struct multicall_entry {
  521     unsigned long op, result;
  522     unsigned long args[6];
  523 };
  524 typedef struct multicall_entry multicall_entry_t;
  525 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
  526 
  527 /*
  528  * Event channel endpoints per domain:
  529  *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
  530  */
  531 #define NR_EVENT_CHANNELS (sizeof(unsigned long) * sizeof(unsigned long) * 64)
  532 
  533 struct vcpu_time_info {
  534     /*
  535      * Updates to the following values are preceded and followed by an
  536      * increment of 'version'. The guest can therefore detect updates by
  537      * looking for changes to 'version'. If the least-significant bit of
  538      * the version number is set then an update is in progress and the guest
  539      * must wait to read a consistent set of values.
  540      * The correct way to interact with the version number is similar to
  541      * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
  542      */
  543     uint32_t version;
  544     uint32_t pad0;
  545     uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
  546     uint64_t system_time;     /* Time, in nanosecs, since boot.    */
  547     /*
  548      * Current system time:
  549      *   system_time +
  550      *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
  551      * CPU frequency (Hz):
  552      *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
  553      */
  554     uint32_t tsc_to_system_mul;
  555     int8_t   tsc_shift;
  556     int8_t   pad1[3];
  557 }; /* 32 bytes */
  558 typedef struct vcpu_time_info vcpu_time_info_t;
  559 
  560 struct vcpu_info {
  561     /*
  562      * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
  563      * a pending notification for a particular VCPU. It is then cleared 
  564      * by the guest OS /before/ checking for pending work, thus avoiding
  565      * a set-and-check race. Note that the mask is only accessed by Xen
  566      * on the CPU that is currently hosting the VCPU. This means that the
  567      * pending and mask flags can be updated by the guest without special
  568      * synchronisation (i.e., no need for the x86 LOCK prefix).
  569      * This may seem suboptimal because if the pending flag is set by
  570      * a different CPU then an IPI may be scheduled even when the mask
  571      * is set. However, note:
  572      *  1. The task of 'interrupt holdoff' is covered by the per-event-
  573      *     channel mask bits. A 'noisy' event that is continually being
  574      *     triggered can be masked at source at this very precise
  575      *     granularity.
  576      *  2. The main purpose of the per-VCPU mask is therefore to restrict
  577      *     reentrant execution: whether for concurrency control, or to
  578      *     prevent unbounded stack usage. Whatever the purpose, we expect
  579      *     that the mask will be asserted only for short periods at a time,
  580      *     and so the likelihood of a 'spurious' IPI is suitably small.
  581      * The mask is read before making an event upcall to the guest: a
  582      * non-zero mask therefore guarantees that the VCPU will not receive
  583      * an upcall activation. The mask is cleared when the VCPU requests
  584      * to block: this avoids wakeup-waiting races.
  585      */
  586     uint8_t evtchn_upcall_pending;
  587     uint8_t evtchn_upcall_mask;
  588     unsigned long evtchn_pending_sel;
  589     struct arch_vcpu_info arch;
  590     struct vcpu_time_info time;
  591 }; /* 64 bytes (x86) */
  592 #ifndef __XEN__
  593 typedef struct vcpu_info vcpu_info_t;
  594 #endif
  595 
  596 /*
  597  * Xen/kernel shared data -- pointer provided in start_info.
  598  *
  599  * This structure is defined to be both smaller than a page, and the
  600  * only data on the shared page, but may vary in actual size even within
  601  * compatible Xen versions; guests should not rely on the size
  602  * of this structure remaining constant.
  603  */
  604 struct shared_info {
  605     struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
  606 
  607     /*
  608      * A domain can create "event channels" on which it can send and receive
  609      * asynchronous event notifications. There are three classes of event that
  610      * are delivered by this mechanism:
  611      *  1. Bi-directional inter- and intra-domain connections. Domains must
  612      *     arrange out-of-band to set up a connection (usually by allocating
  613      *     an unbound 'listener' port and avertising that via a storage service
  614      *     such as xenstore).
  615      *  2. Physical interrupts. A domain with suitable hardware-access
  616      *     privileges can bind an event-channel port to a physical interrupt
  617      *     source.
  618      *  3. Virtual interrupts ('events'). A domain can bind an event-channel
  619      *     port to a virtual interrupt source, such as the virtual-timer
  620      *     device or the emergency console.
  621      * 
  622      * Event channels are addressed by a "port index". Each channel is
  623      * associated with two bits of information:
  624      *  1. PENDING -- notifies the domain that there is a pending notification
  625      *     to be processed. This bit is cleared by the guest.
  626      *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
  627      *     will cause an asynchronous upcall to be scheduled. This bit is only
  628      *     updated by the guest. It is read-only within Xen. If a channel
  629      *     becomes pending while the channel is masked then the 'edge' is lost
  630      *     (i.e., when the channel is unmasked, the guest must manually handle
  631      *     pending notifications as no upcall will be scheduled by Xen).
  632      * 
  633      * To expedite scanning of pending notifications, any 0->1 pending
  634      * transition on an unmasked channel causes a corresponding bit in a
  635      * per-vcpu selector word to be set. Each bit in the selector covers a
  636      * 'C long' in the PENDING bitfield array.
  637      */
  638     unsigned long evtchn_pending[sizeof(unsigned long) * 8];
  639     unsigned long evtchn_mask[sizeof(unsigned long) * 8];
  640 
  641     /*
  642      * Wallclock time: updated only by control software. Guests should base
  643      * their gettimeofday() syscall on this wallclock-base value.
  644      */
  645     uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
  646     uint32_t wc_sec;          /* Secs  00:00:00 UTC, Jan 1, 1970.  */
  647     uint32_t wc_nsec;         /* Nsecs 00:00:00 UTC, Jan 1, 1970.  */
  648 
  649     struct arch_shared_info arch;
  650 
  651 };
  652 #ifndef __XEN__
  653 typedef struct shared_info shared_info_t;
  654 #endif
  655 
  656 /*
  657  * Start-of-day memory layout:
  658  *  1. The domain is started within contiguous virtual-memory region.
  659  *  2. The contiguous region ends on an aligned 4MB boundary.
  660  *  3. This the order of bootstrap elements in the initial virtual region:
  661  *      a. relocated kernel image
  662  *      b. initial ram disk              [mod_start, mod_len]
  663  *      c. list of allocated page frames [mfn_list, nr_pages]
  664  *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
  665  *      d. start_info_t structure        [register ESI (x86)]
  666  *      e. bootstrap page tables         [pt_base, CR3 (x86)]
  667  *      f. bootstrap stack               [register ESP (x86)]
  668  *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
  669  *  5. The initial ram disk may be omitted.
  670  *  6. The list of page frames forms a contiguous 'pseudo-physical' memory
  671  *     layout for the domain. In particular, the bootstrap virtual-memory
  672  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
  673  *  7. All bootstrap elements are mapped read-writable for the guest OS. The
  674  *     only exception is the bootstrap page table, which is mapped read-only.
  675  *  8. There is guaranteed to be at least 512kB padding after the final
  676  *     bootstrap element. If necessary, the bootstrap virtual region is
  677  *     extended by an extra 4MB to ensure this.
  678  */
  679 
  680 #define MAX_GUEST_CMDLINE 1024
  681 struct start_info {
  682     /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
  683     char magic[32];             /* "xen-<version>-<platform>".            */
  684     unsigned long nr_pages;     /* Total pages allocated to this domain.  */
  685     unsigned long shared_info;  /* MACHINE address of shared info struct. */
  686     uint32_t flags;             /* SIF_xxx flags.                         */
  687     xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
  688     uint32_t store_evtchn;      /* Event channel for store communication. */
  689     union {
  690         struct {
  691             xen_pfn_t mfn;      /* MACHINE page number of console page.   */
  692             uint32_t  evtchn;   /* Event channel for console page.        */
  693         } domU;
  694         struct {
  695             uint32_t info_off;  /* Offset of console_info struct.         */
  696             uint32_t info_size; /* Size of console_info struct from start.*/
  697         } dom0;
  698     } console;
  699     /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
  700     unsigned long pt_base;      /* VIRTUAL address of page directory.     */
  701     unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
  702     unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
  703     unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
  704                                 /* (PFN of pre-loaded module if           */
  705                                 /*  SIF_MOD_START_PFN set in flags).      */
  706     unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
  707     int8_t cmd_line[MAX_GUEST_CMDLINE];
  708     /* The pfn range here covers both page table and p->m table frames.   */
  709     unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
  710     unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
  711 };
  712 typedef struct start_info start_info_t;
  713 
  714 /* New console union for dom0 introduced in 0x00030203. */
  715 #if __XEN_INTERFACE_VERSION__ < 0x00030203
  716 #define console_mfn    console.domU.mfn
  717 #define console_evtchn console.domU.evtchn
  718 #endif
  719 
  720 /* These flags are passed in the 'flags' field of start_info_t. */
  721 #define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
  722 #define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
  723 #define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
  724 #define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
  725 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
  726 
  727 /*
  728  * A multiboot module is a package containing modules very similar to a
  729  * multiboot module array. The only differences are:
  730  * - the array of module descriptors is by convention simply at the beginning
  731  *   of the multiboot module,
  732  * - addresses in the module descriptors are based on the beginning of the
  733  *   multiboot module,
  734  * - the number of modules is determined by a termination descriptor that has
  735  *   mod_start == 0.
  736  *
  737  * This permits to both build it statically and reference it in a configuration
  738  * file, and let the PV guest easily rebase the addresses to virtual addresses
  739  * and at the same time count the number of modules.
  740  */
  741 struct xen_multiboot_mod_list
  742 {
  743     /* Address of first byte of the module */
  744     uint32_t mod_start;
  745     /* Address of last byte of the module (inclusive) */
  746     uint32_t mod_end;
  747     /* Address of zero-terminated command line */
  748     uint32_t cmdline;
  749     /* Unused, must be zero */
  750     uint32_t pad;
  751 };
  752 
  753 typedef struct dom0_vga_console_info {
  754     uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
  755 #define XEN_VGATYPE_TEXT_MODE_3 0x03
  756 #define XEN_VGATYPE_VESA_LFB    0x23
  757 #define XEN_VGATYPE_EFI_LFB     0x70
  758 
  759     union {
  760         struct {
  761             /* Font height, in pixels. */
  762             uint16_t font_height;
  763             /* Cursor location (column, row). */
  764             uint16_t cursor_x, cursor_y;
  765             /* Number of rows and columns (dimensions in characters). */
  766             uint16_t rows, columns;
  767         } text_mode_3;
  768 
  769         struct {
  770             /* Width and height, in pixels. */
  771             uint16_t width, height;
  772             /* Bytes per scan line. */
  773             uint16_t bytes_per_line;
  774             /* Bits per pixel. */
  775             uint16_t bits_per_pixel;
  776             /* LFB physical address, and size (in units of 64kB). */
  777             uint32_t lfb_base;
  778             uint32_t lfb_size;
  779             /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
  780             uint8_t  red_pos, red_size;
  781             uint8_t  green_pos, green_size;
  782             uint8_t  blue_pos, blue_size;
  783             uint8_t  rsvd_pos, rsvd_size;
  784 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
  785             /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
  786             uint32_t gbl_caps;
  787             /* Mode attributes (offset 0x0, VESA command 0x4f01). */
  788             uint16_t mode_attrs;
  789 #endif
  790         } vesa_lfb;
  791     } u;
  792 } dom0_vga_console_info_t;
  793 #define xen_vga_console_info dom0_vga_console_info
  794 #define xen_vga_console_info_t dom0_vga_console_info_t
  795 
  796 typedef uint8_t xen_domain_handle_t[16];
  797 
  798 /* Turn a plain number into a C unsigned long constant. */
  799 #define __mk_unsigned_long(x) x ## UL
  800 #define mk_unsigned_long(x) __mk_unsigned_long(x)
  801 
  802 __DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
  803 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
  804 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
  805 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
  806 
  807 #else /* __ASSEMBLY__ */
  808 
  809 /* In assembly code we cannot use C numeric constant suffixes. */
  810 #define mk_unsigned_long(x) x
  811 
  812 #endif /* !__ASSEMBLY__ */
  813 
  814 /* Default definitions for macros used by domctl/sysctl. */
  815 #if defined(__XEN__) || defined(__XEN_TOOLS__)
  816 
  817 #ifndef uint64_aligned_t
  818 #define uint64_aligned_t uint64_t
  819 #endif
  820 #ifndef XEN_GUEST_HANDLE_64
  821 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
  822 #endif
  823 
  824 #ifndef __ASSEMBLY__
  825 struct xenctl_cpumap {
  826     XEN_GUEST_HANDLE_64(uint8) bitmap;
  827     uint32_t nr_cpus;
  828 };
  829 #endif
  830 
  831 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
  832 
  833 #endif /* __XEN_PUBLIC_XEN_H__ */
  834 
  835 /*
  836  * Local variables:
  837  * mode: C
  838  * c-set-style: "BSD"
  839  * c-basic-offset: 4
  840  * tab-width: 4
  841  * indent-tabs-mode: nil
  842  * End:
  843  */

Cache object: 52f02b34e338c0cfeba0eb3ef6894320


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.