The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/xen/interface/xen.h

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2  * xen.h
    3  * 
    4  * Guest OS interface to Xen.
    5  * 
    6  * Permission is hereby granted, free of charge, to any person obtaining a copy
    7  * of this software and associated documentation files (the "Software"), to
    8  * deal in the Software without restriction, including without limitation the
    9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
   10  * sell copies of the Software, and to permit persons to whom the Software is
   11  * furnished to do so, subject to the following conditions:
   12  *
   13  * The above copyright notice and this permission notice shall be included in
   14  * all copies or substantial portions of the Software.
   15  *
   16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
   21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   22  * DEALINGS IN THE SOFTWARE.
   23  *
   24  * Copyright (c) 2004, K A Fraser
   25  */
   26 
   27 #ifndef __XEN_PUBLIC_XEN_H__
   28 #define __XEN_PUBLIC_XEN_H__
   29 
   30 #include "xen-compat.h"
   31 
   32 #if defined(__i386__) || defined(__x86_64__)
   33 #include "arch-x86/xen.h"
   34 #elif defined(__arm__) || defined (__aarch64__)
   35 #include "arch-arm.h"
   36 #else
   37 #error "Unsupported architecture"
   38 #endif
   39 
   40 #ifndef __ASSEMBLY__
   41 /* Guest handles for primitive C types. */
   42 DEFINE_XEN_GUEST_HANDLE(char);
   43 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
   44 DEFINE_XEN_GUEST_HANDLE(int);
   45 __DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
   46 #if __XEN_INTERFACE_VERSION__ < 0x00040300
   47 DEFINE_XEN_GUEST_HANDLE(long);
   48 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
   49 #endif
   50 DEFINE_XEN_GUEST_HANDLE(void);
   51 
   52 DEFINE_XEN_GUEST_HANDLE(uint64_t);
   53 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
   54 DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
   55 #endif
   56 
   57 /*
   58  * HYPERCALLS
   59  */
   60 
   61 /* `incontents 100 hcalls List of hypercalls
   62  * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
   63  */
   64 
   65 #define __HYPERVISOR_set_trap_table        0
   66 #define __HYPERVISOR_mmu_update            1
   67 #define __HYPERVISOR_set_gdt               2
   68 #define __HYPERVISOR_stack_switch          3
   69 #define __HYPERVISOR_set_callbacks         4
   70 #define __HYPERVISOR_fpu_taskswitch        5
   71 #define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
   72 #define __HYPERVISOR_platform_op           7
   73 #define __HYPERVISOR_set_debugreg          8
   74 #define __HYPERVISOR_get_debugreg          9
   75 #define __HYPERVISOR_update_descriptor    10
   76 #define __HYPERVISOR_memory_op            12
   77 #define __HYPERVISOR_multicall            13
   78 #define __HYPERVISOR_update_va_mapping    14
   79 #define __HYPERVISOR_set_timer_op         15
   80 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
   81 #define __HYPERVISOR_xen_version          17
   82 #define __HYPERVISOR_console_io           18
   83 #define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
   84 #define __HYPERVISOR_grant_table_op       20
   85 #define __HYPERVISOR_vm_assist            21
   86 #define __HYPERVISOR_update_va_mapping_otherdomain 22
   87 #define __HYPERVISOR_iret                 23 /* x86 only */
   88 #define __HYPERVISOR_vcpu_op              24
   89 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
   90 #define __HYPERVISOR_mmuext_op            26
   91 #define __HYPERVISOR_xsm_op               27
   92 #define __HYPERVISOR_nmi_op               28
   93 #define __HYPERVISOR_sched_op             29
   94 #define __HYPERVISOR_callback_op          30
   95 #define __HYPERVISOR_xenoprof_op          31
   96 #define __HYPERVISOR_event_channel_op     32
   97 #define __HYPERVISOR_physdev_op           33
   98 #define __HYPERVISOR_hvm_op               34
   99 #define __HYPERVISOR_sysctl               35
  100 #define __HYPERVISOR_domctl               36
  101 #define __HYPERVISOR_kexec_op             37
  102 #define __HYPERVISOR_tmem_op              38
  103 #define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
  104 #define __HYPERVISOR_xenpmu_op            40
  105 
  106 /* Architecture-specific hypercall definitions. */
  107 #define __HYPERVISOR_arch_0               48
  108 #define __HYPERVISOR_arch_1               49
  109 #define __HYPERVISOR_arch_2               50
  110 #define __HYPERVISOR_arch_3               51
  111 #define __HYPERVISOR_arch_4               52
  112 #define __HYPERVISOR_arch_5               53
  113 #define __HYPERVISOR_arch_6               54
  114 #define __HYPERVISOR_arch_7               55
  115 
  116 /* ` } */
  117 
  118 /*
  119  * HYPERCALL COMPATIBILITY.
  120  */
  121 
  122 /* New sched_op hypercall introduced in 0x00030101. */
  123 #if __XEN_INTERFACE_VERSION__ < 0x00030101
  124 #undef __HYPERVISOR_sched_op
  125 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
  126 #endif
  127 
  128 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
  129 #if __XEN_INTERFACE_VERSION__ < 0x00030202
  130 #undef __HYPERVISOR_event_channel_op
  131 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
  132 #undef __HYPERVISOR_physdev_op
  133 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
  134 #endif
  135 
  136 /* New platform_op hypercall introduced in 0x00030204. */
  137 #if __XEN_INTERFACE_VERSION__ < 0x00030204
  138 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
  139 #endif
  140 
  141 /* 
  142  * VIRTUAL INTERRUPTS
  143  * 
  144  * Virtual interrupts that a guest OS may receive from Xen.
  145  * 
  146  * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
  147  * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
  148  * The latter can be allocated only once per guest: they must initially be
  149  * allocated to VCPU0 but can subsequently be re-bound.
  150  */
  151 /* ` enum virq { */
  152 #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
  153 #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
  154 #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
  155 #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
  156 #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
  157 #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
  158 #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
  159 #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
  160 #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
  161 #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
  162 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
  163 #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
  164 #define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
  165 
  166 /* Architecture-specific VIRQ definitions. */
  167 #define VIRQ_ARCH_0    16
  168 #define VIRQ_ARCH_1    17
  169 #define VIRQ_ARCH_2    18
  170 #define VIRQ_ARCH_3    19
  171 #define VIRQ_ARCH_4    20
  172 #define VIRQ_ARCH_5    21
  173 #define VIRQ_ARCH_6    22
  174 #define VIRQ_ARCH_7    23
  175 /* ` } */
  176 
  177 #define NR_VIRQS       24
  178 
  179 /*
  180  * ` enum neg_errnoval
  181  * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
  182  * `                       unsigned count, unsigned *done_out,
  183  * `                       unsigned foreigndom)
  184  * `
  185  * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
  186  * @count is the length of the above array.
  187  * @pdone is an output parameter indicating number of completed operations
  188  * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
  189  *                    hypercall invocation. Can be DOMID_SELF.
  190  * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
  191  *                     in this hypercall invocation. The value of this field
  192  *                     (x) encodes the PFD as follows:
  193  *                     x == 0 => PFD == DOMID_SELF
  194  *                     x != 0 => PFD == x - 1
  195  * 
  196  * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
  197  * -------------
  198  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
  199  * Updates an entry in a page table belonging to PFD. If updating an L1 table,
  200  * and the new table entry is valid/present, the mapped frame must belong to
  201  * FD. If attempting to map an I/O page then the caller assumes the privilege
  202  * of the FD.
  203  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
  204  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
  205  * ptr[:2]  -- Machine address of the page-table entry to modify.
  206  * val      -- Value to write.
  207  *
  208  * There also certain implicit requirements when using this hypercall. The
  209  * pages that make up a pagetable must be mapped read-only in the guest.
  210  * This prevents uncontrolled guest updates to the pagetable. Xen strictly
  211  * enforces this, and will disallow any pagetable update which will end up
  212  * mapping pagetable page RW, and will disallow using any writable page as a
  213  * pagetable. In practice it means that when constructing a page table for a
  214  * process, thread, etc, we MUST be very dilligient in following these rules:
  215  *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
  216  *      the entries.
  217  *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
  218  *      or L2).
  219  *  3). Start filling out the PTE table (L1) with the PTE entries. Once
  220  *      done, make sure to set each of those entries to RO (so writeable bit
  221  *      is unset). Once that has been completed, set the PMD (L2) for this
  222  *      PTE table as RO.
  223  *  4). When completed with all of the PMD (L2) entries, and all of them have
  224  *      been set to RO, make sure to set RO the PUD (L3). Do the same
  225  *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
  226  *  5). Now before you can use those pages (so setting the cr3), you MUST also
  227  *      pin them so that the hypervisor can verify the entries. This is done
  228  *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
  229  *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
  230  *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
  231  *      issued.
  232  * For 32-bit guests, the L4 is not used (as there is less pagetables), so
  233  * instead use L3.
  234  * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
  235  * hypercall. Also if so desired the OS can also try to write to the PTE
  236  * and be trapped by the hypervisor (as the PTE entry is RO).
  237  *
  238  * To deallocate the pages, the operations are the reverse of the steps
  239  * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
  240  * pagetable MUST not be in use (meaning that the cr3 is not set to it).
  241  * 
  242  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
  243  * Updates an entry in the machine->pseudo-physical mapping table.
  244  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
  245  *             The frame must belong to the FD, if one is specified.
  246  * val      -- Value to write into the mapping entry.
  247  * 
  248  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
  249  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
  250  * with those in @val.
  251  *
  252  * @val is usually the machine frame number along with some attributes.
  253  * The attributes by default follow the architecture defined bits. Meaning that
  254  * if this is a X86_64 machine and four page table layout is used, the layout
  255  * of val is:
  256  *  - 63 if set means No execute (NX)
  257  *  - 46-13 the machine frame number
  258  *  - 12 available for guest
  259  *  - 11 available for guest
  260  *  - 10 available for guest
  261  *  - 9 available for guest
  262  *  - 8 global
  263  *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
  264  *  - 6 dirty
  265  *  - 5 accessed
  266  *  - 4 page cached disabled
  267  *  - 3 page write through
  268  *  - 2 userspace accessible
  269  *  - 1 writeable
  270  *  - 0 present
  271  *
  272  *  The one bits that does not fit with the default layout is the PAGE_PSE
  273  *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
  274  *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
  275  *  (or 2MB) instead of using the PAGE_PSE bit.
  276  *
  277  *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
  278  *  using it as the Page Attribute Table (PAT) bit - for details on it please
  279  *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
  280  *  pages instead of using MTRRs.
  281  *
  282  *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
  283  *                    PAT4                 PAT0
  284  *  +-----+-----+----+----+----+-----+----+----+
  285  *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
  286  *  +-----+-----+----+----+----+-----+----+----+
  287  *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
  288  *  +-----+-----+----+----+----+-----+----+----+
  289  *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
  290  *  +-----+-----+----+----+----+-----+----+----+
  291  *
  292  *  The lookup of this index table translates to looking up
  293  *  Bit 7, Bit 4, and Bit 3 of val entry:
  294  *
  295  *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
  296  *
  297  *  If all bits are off, then we are using PAT0. If bit 3 turned on,
  298  *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
  299  *
  300  *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
  301  *  that if a guest that follows Linux's PAT setup and would like to set Write
  302  *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
  303  *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
  304  *  caching as:
  305  *
  306  *   WB = none (so PAT0)
  307  *   WC = PWT (bit 3 on)
  308  *   UC = PWT | PCD (bit 3 and 4 are on).
  309  *
  310  * To make it work with Xen, it needs to translate the WC bit as so:
  311  *
  312  *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
  313  *
  314  * And to translate back it would:
  315  *
  316  * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
  317  */
  318 #define MMU_NORMAL_PT_UPDATE      0 /* checked '*ptr = val'. ptr is MA.      */
  319 #define MMU_MACHPHYS_UPDATE       1 /* ptr = MA of frame to modify entry for */
  320 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
  321 
  322 /*
  323  * MMU EXTENDED OPERATIONS
  324  *
  325  * ` enum neg_errnoval
  326  * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
  327  * `                      unsigned int count,
  328  * `                      unsigned int *pdone,
  329  * `                      unsigned int foreigndom)
  330  */
  331 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
  332  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
  333  * Where the FD has some effect, it is described below.
  334  *
  335  * cmd: MMUEXT_(UN)PIN_*_TABLE
  336  * mfn: Machine frame number to be (un)pinned as a p.t. page.
  337  *      The frame must belong to the FD, if one is specified.
  338  *
  339  * cmd: MMUEXT_NEW_BASEPTR
  340  * mfn: Machine frame number of new page-table base to install in MMU.
  341  *
  342  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
  343  * mfn: Machine frame number of new page-table base to install in MMU
  344  *      when in user space.
  345  *
  346  * cmd: MMUEXT_TLB_FLUSH_LOCAL
  347  * No additional arguments. Flushes local TLB.
  348  *
  349  * cmd: MMUEXT_INVLPG_LOCAL
  350  * linear_addr: Linear address to be flushed from the local TLB.
  351  *
  352  * cmd: MMUEXT_TLB_FLUSH_MULTI
  353  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
  354  *
  355  * cmd: MMUEXT_INVLPG_MULTI
  356  * linear_addr: Linear address to be flushed.
  357  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
  358  *
  359  * cmd: MMUEXT_TLB_FLUSH_ALL
  360  * No additional arguments. Flushes all VCPUs' TLBs.
  361  *
  362  * cmd: MMUEXT_INVLPG_ALL
  363  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
  364  *
  365  * cmd: MMUEXT_FLUSH_CACHE
  366  * No additional arguments. Writes back and flushes cache contents.
  367  *
  368  * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
  369  * No additional arguments. Writes back and flushes cache contents
  370  * on all CPUs in the system.
  371  *
  372  * cmd: MMUEXT_SET_LDT
  373  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
  374  * nr_ents: Number of entries in LDT.
  375  *
  376  * cmd: MMUEXT_CLEAR_PAGE
  377  * mfn: Machine frame number to be cleared.
  378  *
  379  * cmd: MMUEXT_COPY_PAGE
  380  * mfn: Machine frame number of the destination page.
  381  * src_mfn: Machine frame number of the source page.
  382  *
  383  * cmd: MMUEXT_[UN]MARK_SUPER
  384  * mfn: Machine frame number of head of superpage to be [un]marked.
  385  */
  386 /* ` enum mmuext_cmd { */
  387 #define MMUEXT_PIN_L1_TABLE      0
  388 #define MMUEXT_PIN_L2_TABLE      1
  389 #define MMUEXT_PIN_L3_TABLE      2
  390 #define MMUEXT_PIN_L4_TABLE      3
  391 #define MMUEXT_UNPIN_TABLE       4
  392 #define MMUEXT_NEW_BASEPTR       5
  393 #define MMUEXT_TLB_FLUSH_LOCAL   6
  394 #define MMUEXT_INVLPG_LOCAL      7
  395 #define MMUEXT_TLB_FLUSH_MULTI   8
  396 #define MMUEXT_INVLPG_MULTI      9
  397 #define MMUEXT_TLB_FLUSH_ALL    10
  398 #define MMUEXT_INVLPG_ALL       11
  399 #define MMUEXT_FLUSH_CACHE      12
  400 #define MMUEXT_SET_LDT          13
  401 #define MMUEXT_NEW_USER_BASEPTR 15
  402 #define MMUEXT_CLEAR_PAGE       16
  403 #define MMUEXT_COPY_PAGE        17
  404 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
  405 #define MMUEXT_MARK_SUPER       19
  406 #define MMUEXT_UNMARK_SUPER     20
  407 /* ` } */
  408 
  409 #ifndef __ASSEMBLY__
  410 struct mmuext_op {
  411     unsigned int cmd; /* => enum mmuext_cmd */
  412     union {
  413         /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
  414          * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
  415         xen_pfn_t     mfn;
  416         /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
  417         unsigned long linear_addr;
  418     } arg1;
  419     union {
  420         /* SET_LDT */
  421         unsigned int nr_ents;
  422         /* TLB_FLUSH_MULTI, INVLPG_MULTI */
  423 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
  424         XEN_GUEST_HANDLE(const_void) vcpumask;
  425 #else
  426         const void *vcpumask;
  427 #endif
  428         /* COPY_PAGE */
  429         xen_pfn_t src_mfn;
  430     } arg2;
  431 };
  432 typedef struct mmuext_op mmuext_op_t;
  433 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
  434 #endif
  435 
  436 /*
  437  * ` enum neg_errnoval
  438  * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
  439  * `                              enum uvm_flags flags)
  440  * `
  441  * ` enum neg_errnoval
  442  * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
  443  * `                                          enum uvm_flags flags,
  444  * `                                          domid_t domid)
  445  * `
  446  * ` @va: The virtual address whose mapping we want to change
  447  * ` @val: The new page table entry, must contain a machine address
  448  * ` @flags: Control TLB flushes
  449  */
  450 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
  451 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
  452 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
  453 /* ` enum uvm_flags { */
  454 #define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
  455 #define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
  456 #define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
  457 #define UVMF_FLUSHTYPE_MASK     (3UL<<0)
  458 #define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
  459 #define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
  460 #define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
  461 /* ` } */
  462 
  463 /*
  464  * Commands to HYPERVISOR_console_io().
  465  */
  466 #define CONSOLEIO_write         0
  467 #define CONSOLEIO_read          1
  468 
  469 /*
  470  * Commands to HYPERVISOR_vm_assist().
  471  */
  472 #define VMASST_CMD_enable                0
  473 #define VMASST_CMD_disable               1
  474 
  475 /* x86/32 guests: simulate full 4GB segment limits. */
  476 #define VMASST_TYPE_4gb_segments         0
  477 
  478 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
  479 #define VMASST_TYPE_4gb_segments_notify  1
  480 
  481 /*
  482  * x86 guests: support writes to bottom-level PTEs.
  483  * NB1. Page-directory entries cannot be written.
  484  * NB2. Guest must continue to remove all writable mappings of PTEs.
  485  */
  486 #define VMASST_TYPE_writable_pagetables  2
  487 
  488 /* x86/PAE guests: support PDPTs above 4GB. */
  489 #define VMASST_TYPE_pae_extended_cr3     3
  490 
  491 /*
  492  * x86/64 guests: strictly hide M2P from user mode.
  493  * This allows the guest to control respective hypervisor behavior:
  494  * - when not set, L4 tables get created with the respective slot blank,
  495  *   and whenever the L4 table gets used as a kernel one the missing
  496  *   mapping gets inserted,
  497  * - when set, L4 tables get created with the respective slot initialized
  498  *   as before, and whenever the L4 table gets used as a user one the
  499  *   mapping gets zapped.
  500  */
  501 #define VMASST_TYPE_m2p_strict           32
  502 
  503 #if __XEN_INTERFACE_VERSION__ < 0x00040600
  504 #define MAX_VMASST_TYPE                  3
  505 #endif
  506 
  507 #ifndef __ASSEMBLY__
  508 
  509 typedef uint16_t domid_t;
  510 
  511 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
  512 #define DOMID_FIRST_RESERVED (0x7FF0U)
  513 
  514 /* DOMID_SELF is used in certain contexts to refer to oneself. */
  515 #define DOMID_SELF (0x7FF0U)
  516 
  517 /*
  518  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
  519  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
  520  * is useful to ensure that no mappings to the OS's own heap are accidentally
  521  * installed. (e.g., in Linux this could cause havoc as reference counts
  522  * aren't adjusted on the I/O-mapping code path).
  523  * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
  524  * be specified by any calling domain.
  525  */
  526 #define DOMID_IO   (0x7FF1U)
  527 
  528 /*
  529  * DOMID_XEN is used to allow privileged domains to map restricted parts of
  530  * Xen's heap space (e.g., the machine_to_phys table).
  531  * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
  532  * the caller is privileged.
  533  */
  534 #define DOMID_XEN  (0x7FF2U)
  535 
  536 /*
  537  * DOMID_COW is used as the owner of sharable pages */
  538 #define DOMID_COW  (0x7FF3U)
  539 
  540 /* DOMID_INVALID is used to identify pages with unknown owner. */
  541 #define DOMID_INVALID (0x7FF4U)
  542 
  543 /* Idle domain. */
  544 #define DOMID_IDLE (0x7FFFU)
  545 
  546 /*
  547  * Send an array of these to HYPERVISOR_mmu_update().
  548  * NB. The fields are natural pointer/address size for this architecture.
  549  */
  550 struct mmu_update {
  551     uint64_t ptr;       /* Machine address of PTE. */
  552     uint64_t val;       /* New contents of PTE.    */
  553 };
  554 typedef struct mmu_update mmu_update_t;
  555 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
  556 
  557 /*
  558  * ` enum neg_errnoval
  559  * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
  560  * `                      uint32_t nr_calls);
  561  *
  562  * NB. The fields are logically the natural register size for this
  563  * architecture. In cases where xen_ulong_t is larger than this then
  564  * any unused bits in the upper portion must be zero.
  565  */
  566 struct multicall_entry {
  567     xen_ulong_t op, result;
  568     xen_ulong_t args[6];
  569 };
  570 typedef struct multicall_entry multicall_entry_t;
  571 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
  572 
  573 #if __XEN_INTERFACE_VERSION__ < 0x00040400
  574 /*
  575  * Event channel endpoints per domain (when using the 2-level ABI):
  576  *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
  577  */
  578 #define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
  579 #endif
  580 
  581 struct vcpu_time_info {
  582     /*
  583      * Updates to the following values are preceded and followed by an
  584      * increment of 'version'. The guest can therefore detect updates by
  585      * looking for changes to 'version'. If the least-significant bit of
  586      * the version number is set then an update is in progress and the guest
  587      * must wait to read a consistent set of values.
  588      * The correct way to interact with the version number is similar to
  589      * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
  590      */
  591     uint32_t version;
  592     uint32_t pad0;
  593     uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
  594     uint64_t system_time;     /* Time, in nanosecs, since boot.    */
  595     /*
  596      * Current system time:
  597      *   system_time +
  598      *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
  599      * CPU frequency (Hz):
  600      *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
  601      */
  602     uint32_t tsc_to_system_mul;
  603     int8_t   tsc_shift;
  604     int8_t   pad1[3];
  605 }; /* 32 bytes */
  606 typedef struct vcpu_time_info vcpu_time_info_t;
  607 
  608 struct vcpu_info {
  609     /*
  610      * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
  611      * a pending notification for a particular VCPU. It is then cleared 
  612      * by the guest OS /before/ checking for pending work, thus avoiding
  613      * a set-and-check race. Note that the mask is only accessed by Xen
  614      * on the CPU that is currently hosting the VCPU. This means that the
  615      * pending and mask flags can be updated by the guest without special
  616      * synchronisation (i.e., no need for the x86 LOCK prefix).
  617      * This may seem suboptimal because if the pending flag is set by
  618      * a different CPU then an IPI may be scheduled even when the mask
  619      * is set. However, note:
  620      *  1. The task of 'interrupt holdoff' is covered by the per-event-
  621      *     channel mask bits. A 'noisy' event that is continually being
  622      *     triggered can be masked at source at this very precise
  623      *     granularity.
  624      *  2. The main purpose of the per-VCPU mask is therefore to restrict
  625      *     reentrant execution: whether for concurrency control, or to
  626      *     prevent unbounded stack usage. Whatever the purpose, we expect
  627      *     that the mask will be asserted only for short periods at a time,
  628      *     and so the likelihood of a 'spurious' IPI is suitably small.
  629      * The mask is read before making an event upcall to the guest: a
  630      * non-zero mask therefore guarantees that the VCPU will not receive
  631      * an upcall activation. The mask is cleared when the VCPU requests
  632      * to block: this avoids wakeup-waiting races.
  633      */
  634     uint8_t evtchn_upcall_pending;
  635 #ifdef XEN_HAVE_PV_UPCALL_MASK
  636     uint8_t evtchn_upcall_mask;
  637 #else /* XEN_HAVE_PV_UPCALL_MASK */
  638     uint8_t pad0;
  639 #endif /* XEN_HAVE_PV_UPCALL_MASK */
  640     xen_ulong_t evtchn_pending_sel;
  641     struct arch_vcpu_info arch;
  642     struct vcpu_time_info time;
  643 }; /* 64 bytes (x86) */
  644 #ifndef __XEN__
  645 typedef struct vcpu_info vcpu_info_t;
  646 #endif
  647 
  648 /*
  649  * `incontents 200 startofday_shared Start-of-day shared data structure
  650  * Xen/kernel shared data -- pointer provided in start_info.
  651  *
  652  * This structure is defined to be both smaller than a page, and the
  653  * only data on the shared page, but may vary in actual size even within
  654  * compatible Xen versions; guests should not rely on the size
  655  * of this structure remaining constant.
  656  */
  657 struct shared_info {
  658     struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
  659 
  660     /*
  661      * A domain can create "event channels" on which it can send and receive
  662      * asynchronous event notifications. There are three classes of event that
  663      * are delivered by this mechanism:
  664      *  1. Bi-directional inter- and intra-domain connections. Domains must
  665      *     arrange out-of-band to set up a connection (usually by allocating
  666      *     an unbound 'listener' port and avertising that via a storage service
  667      *     such as xenstore).
  668      *  2. Physical interrupts. A domain with suitable hardware-access
  669      *     privileges can bind an event-channel port to a physical interrupt
  670      *     source.
  671      *  3. Virtual interrupts ('events'). A domain can bind an event-channel
  672      *     port to a virtual interrupt source, such as the virtual-timer
  673      *     device or the emergency console.
  674      * 
  675      * Event channels are addressed by a "port index". Each channel is
  676      * associated with two bits of information:
  677      *  1. PENDING -- notifies the domain that there is a pending notification
  678      *     to be processed. This bit is cleared by the guest.
  679      *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
  680      *     will cause an asynchronous upcall to be scheduled. This bit is only
  681      *     updated by the guest. It is read-only within Xen. If a channel
  682      *     becomes pending while the channel is masked then the 'edge' is lost
  683      *     (i.e., when the channel is unmasked, the guest must manually handle
  684      *     pending notifications as no upcall will be scheduled by Xen).
  685      * 
  686      * To expedite scanning of pending notifications, any 0->1 pending
  687      * transition on an unmasked channel causes a corresponding bit in a
  688      * per-vcpu selector word to be set. Each bit in the selector covers a
  689      * 'C long' in the PENDING bitfield array.
  690      */
  691     xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
  692     xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
  693 
  694     /*
  695      * Wallclock time: updated only by control software. Guests should base
  696      * their gettimeofday() syscall on this wallclock-base value.
  697      */
  698     uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
  699     uint32_t wc_sec;          /* Secs  00:00:00 UTC, Jan 1, 1970.  */
  700     uint32_t wc_nsec;         /* Nsecs 00:00:00 UTC, Jan 1, 1970.  */
  701 #if !defined(__i386__)
  702     uint32_t wc_sec_hi;
  703 # define xen_wc_sec_hi wc_sec_hi
  704 #elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
  705 # define xen_wc_sec_hi arch.wc_sec_hi
  706 #endif
  707 
  708     struct arch_shared_info arch;
  709 
  710 };
  711 #ifndef __XEN__
  712 typedef struct shared_info shared_info_t;
  713 #endif
  714 
  715 /*
  716  * `incontents 200 startofday Start-of-day memory layout
  717  *
  718  *  1. The domain is started within contiguous virtual-memory region.
  719  *  2. The contiguous region ends on an aligned 4MB boundary.
  720  *  3. This the order of bootstrap elements in the initial virtual region:
  721  *      a. relocated kernel image
  722  *      b. initial ram disk              [mod_start, mod_len]
  723  *         (may be omitted)
  724  *      c. list of allocated page frames [mfn_list, nr_pages]
  725  *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
  726  *      d. start_info_t structure        [register ESI (x86)]
  727  *         in case of dom0 this page contains the console info, too
  728  *      e. unless dom0: xenstore ring page
  729  *      f. unless dom0: console ring page
  730  *      g. bootstrap page tables         [pt_base and CR3 (x86)]
  731  *      h. bootstrap stack               [register ESP (x86)]
  732  *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
  733  *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
  734  *     layout for the domain. In particular, the bootstrap virtual-memory
  735  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
  736  *  6. All bootstrap elements are mapped read-writable for the guest OS. The
  737  *     only exception is the bootstrap page table, which is mapped read-only.
  738  *  7. There is guaranteed to be at least 512kB padding after the final
  739  *     bootstrap element. If necessary, the bootstrap virtual region is
  740  *     extended by an extra 4MB to ensure this.
  741  *
  742  * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
  743  * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
  744  * to the start of the guest page tables (it was offset by two pages).
  745  * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
  746  * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
  747  * allocated in the order: 'first L1','first L2', 'first L3', so the offset
  748  * to the page table base is by two pages back. The initial domain if it is
  749  * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
  750  * pages preceding pt_base and mark them as reserved/unused.
  751  */
  752 #ifdef XEN_HAVE_PV_GUEST_ENTRY
  753 struct start_info {
  754     /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
  755     char magic[32];             /* "xen-<version>-<platform>".            */
  756     unsigned long nr_pages;     /* Total pages allocated to this domain.  */
  757     unsigned long shared_info;  /* MACHINE address of shared info struct. */
  758     uint32_t flags;             /* SIF_xxx flags.                         */
  759     xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
  760     uint32_t store_evtchn;      /* Event channel for store communication. */
  761     union {
  762         struct {
  763             xen_pfn_t mfn;      /* MACHINE page number of console page.   */
  764             uint32_t  evtchn;   /* Event channel for console page.        */
  765         } domU;
  766         struct {
  767             uint32_t info_off;  /* Offset of console_info struct.         */
  768             uint32_t info_size; /* Size of console_info struct from start.*/
  769         } dom0;
  770     } console;
  771     /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
  772     unsigned long pt_base;      /* VIRTUAL address of page directory.     */
  773     unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
  774     unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
  775     unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
  776                                 /* (PFN of pre-loaded module if           */
  777                                 /*  SIF_MOD_START_PFN set in flags).      */
  778     unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
  779 #define MAX_GUEST_CMDLINE 1024
  780     int8_t cmd_line[MAX_GUEST_CMDLINE];
  781     /* The pfn range here covers both page table and p->m table frames.   */
  782     unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
  783     unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
  784 };
  785 typedef struct start_info start_info_t;
  786 
  787 /* New console union for dom0 introduced in 0x00030203. */
  788 #if __XEN_INTERFACE_VERSION__ < 0x00030203
  789 #define console_mfn    console.domU.mfn
  790 #define console_evtchn console.domU.evtchn
  791 #endif
  792 #endif /* XEN_HAVE_PV_GUEST_ENTRY */
  793 
  794 /* These flags are passed in the 'flags' field of start_info_t. */
  795 #define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
  796 #define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
  797 #define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
  798 #define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
  799 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
  800                                    /* P->M making the 3 level tree obsolete? */
  801 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
  802 
  803 /*
  804  * A multiboot module is a package containing modules very similar to a
  805  * multiboot module array. The only differences are:
  806  * - the array of module descriptors is by convention simply at the beginning
  807  *   of the multiboot module,
  808  * - addresses in the module descriptors are based on the beginning of the
  809  *   multiboot module,
  810  * - the number of modules is determined by a termination descriptor that has
  811  *   mod_start == 0.
  812  *
  813  * This permits to both build it statically and reference it in a configuration
  814  * file, and let the PV guest easily rebase the addresses to virtual addresses
  815  * and at the same time count the number of modules.
  816  */
  817 struct xen_multiboot_mod_list
  818 {
  819     /* Address of first byte of the module */
  820     uint32_t mod_start;
  821     /* Address of last byte of the module (inclusive) */
  822     uint32_t mod_end;
  823     /* Address of zero-terminated command line */
  824     uint32_t cmdline;
  825     /* Unused, must be zero */
  826     uint32_t pad;
  827 };
  828 /*
  829  * `incontents 200 startofday_dom0_console Dom0_console
  830  *
  831  * The console structure in start_info.console.dom0
  832  *
  833  * This structure includes a variety of information required to
  834  * have a working VGA/VESA console.
  835  */
  836 typedef struct dom0_vga_console_info {
  837     uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
  838 #define XEN_VGATYPE_TEXT_MODE_3 0x03
  839 #define XEN_VGATYPE_VESA_LFB    0x23
  840 #define XEN_VGATYPE_EFI_LFB     0x70
  841 
  842     union {
  843         struct {
  844             /* Font height, in pixels. */
  845             uint16_t font_height;
  846             /* Cursor location (column, row). */
  847             uint16_t cursor_x, cursor_y;
  848             /* Number of rows and columns (dimensions in characters). */
  849             uint16_t rows, columns;
  850         } text_mode_3;
  851 
  852         struct {
  853             /* Width and height, in pixels. */
  854             uint16_t width, height;
  855             /* Bytes per scan line. */
  856             uint16_t bytes_per_line;
  857             /* Bits per pixel. */
  858             uint16_t bits_per_pixel;
  859             /* LFB physical address, and size (in units of 64kB). */
  860             uint32_t lfb_base;
  861             uint32_t lfb_size;
  862             /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
  863             uint8_t  red_pos, red_size;
  864             uint8_t  green_pos, green_size;
  865             uint8_t  blue_pos, blue_size;
  866             uint8_t  rsvd_pos, rsvd_size;
  867 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
  868             /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
  869             uint32_t gbl_caps;
  870             /* Mode attributes (offset 0x0, VESA command 0x4f01). */
  871             uint16_t mode_attrs;
  872 #endif
  873         } vesa_lfb;
  874     } u;
  875 } dom0_vga_console_info_t;
  876 #define xen_vga_console_info dom0_vga_console_info
  877 #define xen_vga_console_info_t dom0_vga_console_info_t
  878 
  879 typedef uint8_t xen_domain_handle_t[16];
  880 
  881 /* Turn a plain number into a C unsigned long constant. */
  882 #define __mk_unsigned_long(x) x ## UL
  883 #define mk_unsigned_long(x) __mk_unsigned_long(x)
  884 
  885 __DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
  886 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
  887 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
  888 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
  889 
  890 #else /* __ASSEMBLY__ */
  891 
  892 /* In assembly code we cannot use C numeric constant suffixes. */
  893 #define mk_unsigned_long(x) x
  894 
  895 #endif /* !__ASSEMBLY__ */
  896 
  897 /* Default definitions for macros used by domctl/sysctl. */
  898 #if defined(__XEN__) || defined(__XEN_TOOLS__)
  899 
  900 #ifndef int64_aligned_t
  901 #define int64_aligned_t int64_t
  902 #endif
  903 #ifndef uint64_aligned_t
  904 #define uint64_aligned_t uint64_t
  905 #endif
  906 #ifndef XEN_GUEST_HANDLE_64
  907 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
  908 #endif
  909 
  910 #ifndef __ASSEMBLY__
  911 struct xenctl_bitmap {
  912     XEN_GUEST_HANDLE_64(uint8) bitmap;
  913     uint32_t nr_bits;
  914 };
  915 #endif
  916 
  917 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
  918 
  919 #endif /* __XEN_PUBLIC_XEN_H__ */
  920 
  921 /*
  922  * Local variables:
  923  * mode: C
  924  * c-file-style: "BSD"
  925  * c-basic-offset: 4
  926  * tab-width: 4
  927  * indent-tabs-mode: nil
  928  * End:
  929  */

Cache object: bfcd6ed00f9492112a8effe3e9b4289a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.