The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/xen/interface/xen.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2  * xen.h
    3  *
    4  * Guest OS interface to Xen.
    5  *
    6  * Permission is hereby granted, free of charge, to any person obtaining a copy
    7  * of this software and associated documentation files (the "Software"), to
    8  * deal in the Software without restriction, including without limitation the
    9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
   10  * sell copies of the Software, and to permit persons to whom the Software is
   11  * furnished to do so, subject to the following conditions:
   12  *
   13  * The above copyright notice and this permission notice shall be included in
   14  * all copies or substantial portions of the Software.
   15  *
   16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
   21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   22  * DEALINGS IN THE SOFTWARE.
   23  *
   24  * Copyright (c) 2004, K A Fraser
   25  */
   26 
   27 #ifndef __XEN_PUBLIC_XEN_H__
   28 #define __XEN_PUBLIC_XEN_H__
   29 
   30 #include "xen-compat.h"
   31 
   32 #if defined(__i386__) || defined(__x86_64__)
   33 #include "arch-x86/xen.h"
   34 #elif defined(__arm__) || defined (__aarch64__)
   35 #include "arch-arm.h"
   36 #else
   37 #error "Unsupported architecture"
   38 #endif
   39 
   40 #ifndef __ASSEMBLY__
   41 /* Guest handles for primitive C types. */
   42 DEFINE_XEN_GUEST_HANDLE(char);
   43 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
   44 DEFINE_XEN_GUEST_HANDLE(int);
   45 __DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
   46 #if __XEN_INTERFACE_VERSION__ < 0x00040300
   47 DEFINE_XEN_GUEST_HANDLE(long);
   48 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
   49 #endif
   50 DEFINE_XEN_GUEST_HANDLE(void);
   51 
   52 DEFINE_XEN_GUEST_HANDLE(uint64_t);
   53 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
   54 DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
   55 
   56 /* Define a variable length array (depends on compiler). */
   57 #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
   58 #define XEN_FLEX_ARRAY_DIM
   59 #elif defined(__GNUC__)
   60 #define XEN_FLEX_ARRAY_DIM  0
   61 #else
   62 #define XEN_FLEX_ARRAY_DIM  1 /* variable size */
   63 #endif
   64 
   65 /* Turn a plain number into a C unsigned (long (long)) constant. */
   66 #define __xen_mk_uint(x)  x ## U
   67 #define __xen_mk_ulong(x) x ## UL
   68 #ifndef __xen_mk_ullong
   69 # define __xen_mk_ullong(x) x ## ULL
   70 #endif
   71 #define xen_mk_uint(x)    __xen_mk_uint(x)
   72 #define xen_mk_ulong(x)   __xen_mk_ulong(x)
   73 #define xen_mk_ullong(x)  __xen_mk_ullong(x)
   74 
   75 #else
   76 
   77 /* In assembly code we cannot use C numeric constant suffixes. */
   78 #define xen_mk_uint(x)   x
   79 #define xen_mk_ulong(x)  x
   80 #define xen_mk_ullong(x) x
   81 
   82 #endif
   83 
   84 /*
   85  * HYPERCALLS
   86  */
   87 
   88 /* `incontents 100 hcalls List of hypercalls
   89  * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
   90  */
   91 
   92 #define __HYPERVISOR_set_trap_table        0
   93 #define __HYPERVISOR_mmu_update            1
   94 #define __HYPERVISOR_set_gdt               2
   95 #define __HYPERVISOR_stack_switch          3
   96 #define __HYPERVISOR_set_callbacks         4
   97 #define __HYPERVISOR_fpu_taskswitch        5
   98 #define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
   99 #define __HYPERVISOR_platform_op           7
  100 #define __HYPERVISOR_set_debugreg          8
  101 #define __HYPERVISOR_get_debugreg          9
  102 #define __HYPERVISOR_update_descriptor    10
  103 #define __HYPERVISOR_memory_op            12
  104 #define __HYPERVISOR_multicall            13
  105 #define __HYPERVISOR_update_va_mapping    14
  106 #define __HYPERVISOR_set_timer_op         15
  107 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
  108 #define __HYPERVISOR_xen_version          17
  109 #define __HYPERVISOR_console_io           18
  110 #define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
  111 #define __HYPERVISOR_grant_table_op       20
  112 #define __HYPERVISOR_vm_assist            21
  113 #define __HYPERVISOR_update_va_mapping_otherdomain 22
  114 #define __HYPERVISOR_iret                 23 /* x86 only */
  115 #define __HYPERVISOR_vcpu_op              24
  116 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
  117 #define __HYPERVISOR_mmuext_op            26
  118 #define __HYPERVISOR_xsm_op               27
  119 #define __HYPERVISOR_nmi_op               28
  120 #define __HYPERVISOR_sched_op             29
  121 #define __HYPERVISOR_callback_op          30
  122 #define __HYPERVISOR_xenoprof_op          31
  123 #define __HYPERVISOR_event_channel_op     32
  124 #define __HYPERVISOR_physdev_op           33
  125 #define __HYPERVISOR_hvm_op               34
  126 #define __HYPERVISOR_sysctl               35
  127 #define __HYPERVISOR_domctl               36
  128 #define __HYPERVISOR_kexec_op             37
  129 #define __HYPERVISOR_tmem_op              38
  130 #define __HYPERVISOR_argo_op              39
  131 #define __HYPERVISOR_xenpmu_op            40
  132 #define __HYPERVISOR_dm_op                41
  133 #define __HYPERVISOR_hypfs_op             42
  134 
  135 /* Architecture-specific hypercall definitions. */
  136 #define __HYPERVISOR_arch_0               48
  137 #define __HYPERVISOR_arch_1               49
  138 #define __HYPERVISOR_arch_2               50
  139 #define __HYPERVISOR_arch_3               51
  140 #define __HYPERVISOR_arch_4               52
  141 #define __HYPERVISOR_arch_5               53
  142 #define __HYPERVISOR_arch_6               54
  143 #define __HYPERVISOR_arch_7               55
  144 
  145 /* ` } */
  146 
  147 /*
  148  * HYPERCALL COMPATIBILITY.
  149  */
  150 
  151 /* New sched_op hypercall introduced in 0x00030101. */
  152 #if __XEN_INTERFACE_VERSION__ < 0x00030101
  153 #undef __HYPERVISOR_sched_op
  154 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
  155 #endif
  156 
  157 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
  158 #if __XEN_INTERFACE_VERSION__ < 0x00030202
  159 #undef __HYPERVISOR_event_channel_op
  160 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
  161 #undef __HYPERVISOR_physdev_op
  162 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
  163 #endif
  164 
  165 /* New platform_op hypercall introduced in 0x00030204. */
  166 #if __XEN_INTERFACE_VERSION__ < 0x00030204
  167 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
  168 #endif
  169 
  170 /*
  171  * VIRTUAL INTERRUPTS
  172  *
  173  * Virtual interrupts that a guest OS may receive from Xen.
  174  *
  175  * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
  176  * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
  177  * The latter can be allocated only once per guest: they must initially be
  178  * allocated to VCPU0 but can subsequently be re-bound.
  179  */
  180 /* ` enum virq { */
  181 #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
  182 #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
  183 #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
  184 #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
  185 #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
  186 #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
  187 #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
  188 #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
  189 #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
  190 #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occurred          */
  191 #define VIRQ_ARGO       11 /* G. Argo interdomain message notification       */
  192 #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
  193 #define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
  194 
  195 /* Architecture-specific VIRQ definitions. */
  196 #define VIRQ_ARCH_0    16
  197 #define VIRQ_ARCH_1    17
  198 #define VIRQ_ARCH_2    18
  199 #define VIRQ_ARCH_3    19
  200 #define VIRQ_ARCH_4    20
  201 #define VIRQ_ARCH_5    21
  202 #define VIRQ_ARCH_6    22
  203 #define VIRQ_ARCH_7    23
  204 /* ` } */
  205 
  206 #define NR_VIRQS       24
  207 
  208 /*
  209  * ` enum neg_errnoval
  210  * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
  211  * `                       unsigned count, unsigned *done_out,
  212  * `                       unsigned foreigndom)
  213  * `
  214  * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
  215  * @count is the length of the above array.
  216  * @pdone is an output parameter indicating number of completed operations
  217  * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
  218  *                    hypercall invocation. Can be DOMID_SELF.
  219  * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
  220  *                     in this hypercall invocation. The value of this field
  221  *                     (x) encodes the PFD as follows:
  222  *                     x == 0 => PFD == DOMID_SELF
  223  *                     x != 0 => PFD == x - 1
  224  *
  225  * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
  226  * -------------
  227  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
  228  * Updates an entry in a page table belonging to PFD. If updating an L1 table,
  229  * and the new table entry is valid/present, the mapped frame must belong to
  230  * FD. If attempting to map an I/O page then the caller assumes the privilege
  231  * of the FD.
  232  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
  233  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
  234  * ptr[:2]  -- Machine address of the page-table entry to modify.
  235  * val      -- Value to write.
  236  *
  237  * There also certain implicit requirements when using this hypercall. The
  238  * pages that make up a pagetable must be mapped read-only in the guest.
  239  * This prevents uncontrolled guest updates to the pagetable. Xen strictly
  240  * enforces this, and will disallow any pagetable update which will end up
  241  * mapping pagetable page RW, and will disallow using any writable page as a
  242  * pagetable. In practice it means that when constructing a page table for a
  243  * process, thread, etc, we MUST be very dilligient in following these rules:
  244  *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
  245  *      the entries.
  246  *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
  247  *      or L2).
  248  *  3). Start filling out the PTE table (L1) with the PTE entries. Once
  249  *      done, make sure to set each of those entries to RO (so writeable bit
  250  *      is unset). Once that has been completed, set the PMD (L2) for this
  251  *      PTE table as RO.
  252  *  4). When completed with all of the PMD (L2) entries, and all of them have
  253  *      been set to RO, make sure to set RO the PUD (L3). Do the same
  254  *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
  255  *  5). Now before you can use those pages (so setting the cr3), you MUST also
  256  *      pin them so that the hypervisor can verify the entries. This is done
  257  *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
  258  *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
  259  *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
  260  *      issued.
  261  * For 32-bit guests, the L4 is not used (as there is less pagetables), so
  262  * instead use L3.
  263  * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
  264  * hypercall. Also if so desired the OS can also try to write to the PTE
  265  * and be trapped by the hypervisor (as the PTE entry is RO).
  266  *
  267  * To deallocate the pages, the operations are the reverse of the steps
  268  * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
  269  * pagetable MUST not be in use (meaning that the cr3 is not set to it).
  270  *
  271  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
  272  * Updates an entry in the machine->pseudo-physical mapping table.
  273  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
  274  *             The frame must belong to the FD, if one is specified.
  275  * val      -- Value to write into the mapping entry.
  276  *
  277  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
  278  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
  279  * with those in @val.
  280  *
  281  * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
  282  * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
  283  * page tables.
  284  *
  285  * @val is usually the machine frame number along with some attributes.
  286  * The attributes by default follow the architecture defined bits. Meaning that
  287  * if this is a X86_64 machine and four page table layout is used, the layout
  288  * of val is:
  289  *  - 63 if set means No execute (NX)
  290  *  - 46-13 the machine frame number
  291  *  - 12 available for guest
  292  *  - 11 available for guest
  293  *  - 10 available for guest
  294  *  - 9 available for guest
  295  *  - 8 global
  296  *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
  297  *  - 6 dirty
  298  *  - 5 accessed
  299  *  - 4 page cached disabled
  300  *  - 3 page write through
  301  *  - 2 userspace accessible
  302  *  - 1 writeable
  303  *  - 0 present
  304  *
  305  *  The one bits that does not fit with the default layout is the PAGE_PSE
  306  *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
  307  *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
  308  *  (or 2MB) instead of using the PAGE_PSE bit.
  309  *
  310  *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
  311  *  using it as the Page Attribute Table (PAT) bit - for details on it please
  312  *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
  313  *  pages instead of using MTRRs.
  314  *
  315  *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
  316  *                    PAT4                 PAT0
  317  *  +-----+-----+----+----+----+-----+----+----+
  318  *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
  319  *  +-----+-----+----+----+----+-----+----+----+
  320  *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
  321  *  +-----+-----+----+----+----+-----+----+----+
  322  *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
  323  *  +-----+-----+----+----+----+-----+----+----+
  324  *
  325  *  The lookup of this index table translates to looking up
  326  *  Bit 7, Bit 4, and Bit 3 of val entry:
  327  *
  328  *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
  329  *
  330  *  If all bits are off, then we are using PAT0. If bit 3 turned on,
  331  *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
  332  *
  333  *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
  334  *  that if a guest that follows Linux's PAT setup and would like to set Write
  335  *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
  336  *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
  337  *  caching as:
  338  *
  339  *   WB = none (so PAT0)
  340  *   WC = PWT (bit 3 on)
  341  *   UC = PWT | PCD (bit 3 and 4 are on).
  342  *
  343  * To make it work with Xen, it needs to translate the WC bit as so:
  344  *
  345  *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
  346  *
  347  * And to translate back it would:
  348  *
  349  * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
  350  */
  351 #define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
  352 #define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
  353 #define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
  354 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
  355                                      /* val never translated.                 */
  356 
  357 /*
  358  * MMU EXTENDED OPERATIONS
  359  *
  360  * ` enum neg_errnoval
  361  * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
  362  * `                      unsigned int count,
  363  * `                      unsigned int *pdone,
  364  * `                      unsigned int foreigndom)
  365  */
  366 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
  367  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
  368  * Where the FD has some effect, it is described below.
  369  *
  370  * cmd: MMUEXT_(UN)PIN_*_TABLE
  371  * mfn: Machine frame number to be (un)pinned as a p.t. page.
  372  *      The frame must belong to the FD, if one is specified.
  373  *
  374  * cmd: MMUEXT_NEW_BASEPTR
  375  * mfn: Machine frame number of new page-table base to install in MMU.
  376  *
  377  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
  378  * mfn: Machine frame number of new page-table base to install in MMU
  379  *      when in user space.
  380  *
  381  * cmd: MMUEXT_TLB_FLUSH_LOCAL
  382  * No additional arguments. Flushes local TLB.
  383  *
  384  * cmd: MMUEXT_INVLPG_LOCAL
  385  * linear_addr: Linear address to be flushed from the local TLB.
  386  *
  387  * cmd: MMUEXT_TLB_FLUSH_MULTI
  388  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
  389  *
  390  * cmd: MMUEXT_INVLPG_MULTI
  391  * linear_addr: Linear address to be flushed.
  392  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
  393  *
  394  * cmd: MMUEXT_TLB_FLUSH_ALL
  395  * No additional arguments. Flushes all VCPUs' TLBs.
  396  *
  397  * cmd: MMUEXT_INVLPG_ALL
  398  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
  399  *
  400  * cmd: MMUEXT_FLUSH_CACHE
  401  * No additional arguments. Writes back and flushes cache contents.
  402  *
  403  * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
  404  * No additional arguments. Writes back and flushes cache contents
  405  * on all CPUs in the system.
  406  *
  407  * cmd: MMUEXT_SET_LDT
  408  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
  409  * nr_ents: Number of entries in LDT.
  410  *
  411  * cmd: MMUEXT_CLEAR_PAGE
  412  * mfn: Machine frame number to be cleared.
  413  *
  414  * cmd: MMUEXT_COPY_PAGE
  415  * mfn: Machine frame number of the destination page.
  416  * src_mfn: Machine frame number of the source page.
  417  *
  418  * cmd: MMUEXT_[UN]MARK_SUPER
  419  * mfn: Machine frame number of head of superpage to be [un]marked.
  420  */
  421 /* ` enum mmuext_cmd { */
  422 #define MMUEXT_PIN_L1_TABLE      0
  423 #define MMUEXT_PIN_L2_TABLE      1
  424 #define MMUEXT_PIN_L3_TABLE      2
  425 #define MMUEXT_PIN_L4_TABLE      3
  426 #define MMUEXT_UNPIN_TABLE       4
  427 #define MMUEXT_NEW_BASEPTR       5
  428 #define MMUEXT_TLB_FLUSH_LOCAL   6
  429 #define MMUEXT_INVLPG_LOCAL      7
  430 #define MMUEXT_TLB_FLUSH_MULTI   8
  431 #define MMUEXT_INVLPG_MULTI      9
  432 #define MMUEXT_TLB_FLUSH_ALL    10
  433 #define MMUEXT_INVLPG_ALL       11
  434 #define MMUEXT_FLUSH_CACHE      12
  435 #define MMUEXT_SET_LDT          13
  436 #define MMUEXT_NEW_USER_BASEPTR 15
  437 #define MMUEXT_CLEAR_PAGE       16
  438 #define MMUEXT_COPY_PAGE        17
  439 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
  440 #define MMUEXT_MARK_SUPER       19
  441 #define MMUEXT_UNMARK_SUPER     20
  442 /* ` } */
  443 
  444 #ifndef __ASSEMBLY__
  445 struct mmuext_op {
  446     unsigned int cmd; /* => enum mmuext_cmd */
  447     union {
  448         /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
  449          * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
  450         xen_pfn_t     mfn;
  451         /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
  452         unsigned long linear_addr;
  453     } arg1;
  454     union {
  455         /* SET_LDT */
  456         unsigned int nr_ents;
  457         /* TLB_FLUSH_MULTI, INVLPG_MULTI */
  458 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
  459         XEN_GUEST_HANDLE(const_void) vcpumask;
  460 #else
  461         const void *vcpumask;
  462 #endif
  463         /* COPY_PAGE */
  464         xen_pfn_t src_mfn;
  465     } arg2;
  466 };
  467 typedef struct mmuext_op mmuext_op_t;
  468 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
  469 #endif
  470 
  471 /*
  472  * ` enum neg_errnoval
  473  * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
  474  * `                              enum uvm_flags flags)
  475  * `
  476  * ` enum neg_errnoval
  477  * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
  478  * `                                          enum uvm_flags flags,
  479  * `                                          domid_t domid)
  480  * `
  481  * ` @va: The virtual address whose mapping we want to change
  482  * ` @val: The new page table entry, must contain a machine address
  483  * ` @flags: Control TLB flushes
  484  */
  485 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
  486 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
  487 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
  488 /* ` enum uvm_flags { */
  489 #define UVMF_NONE           (xen_mk_ulong(0)<<0) /* No flushing at all.   */
  490 #define UVMF_TLB_FLUSH      (xen_mk_ulong(1)<<0) /* Flush entire TLB(s).  */
  491 #define UVMF_INVLPG         (xen_mk_ulong(2)<<0) /* Flush only one entry. */
  492 #define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
  493 #define UVMF_MULTI          (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
  494 #define UVMF_LOCAL          (xen_mk_ulong(0)<<2) /* Flush local TLB.      */
  495 #define UVMF_ALL            (xen_mk_ulong(1)<<2) /* Flush all TLBs.       */
  496 /* ` } */
  497 
  498 /*
  499  * ` int
  500  * ` HYPERVISOR_console_io(unsigned int cmd,
  501  * `                       unsigned int count,
  502  * `                       char buffer[]);
  503  *
  504  * @cmd: Command (see below)
  505  * @count: Size of the buffer to read/write
  506  * @buffer: Pointer in the guest memory
  507  *
  508  * List of commands:
  509  *
  510  *  * CONSOLEIO_write: Write the buffer to Xen console.
  511  *      For the hardware domain, all the characters in the buffer will
  512  *      be written. Characters will be printed directly to the console.
  513  *      For all the other domains, only the printable characters will be
  514  *      written. Characters may be buffered until a newline (i.e '\n') is
  515  *      found.
  516  *      @return 0 on success, otherwise return an error code.
  517  *  * CONSOLEIO_read: Attempts to read up to @count characters from Xen
  518  *      console. The maximum buffer size (i.e. @count) supported is 2GB.
  519  *      @return the number of characters read on success, otherwise return
  520  *      an error code.
  521  */
  522 #define CONSOLEIO_write         0
  523 #define CONSOLEIO_read          1
  524 
  525 /*
  526  * Commands to HYPERVISOR_vm_assist().
  527  */
  528 #define VMASST_CMD_enable                0
  529 #define VMASST_CMD_disable               1
  530 
  531 /* x86/32 guests: simulate full 4GB segment limits. */
  532 #define VMASST_TYPE_4gb_segments         0
  533 
  534 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
  535 #define VMASST_TYPE_4gb_segments_notify  1
  536 
  537 /*
  538  * x86 guests: support writes to bottom-level PTEs.
  539  * NB1. Page-directory entries cannot be written.
  540  * NB2. Guest must continue to remove all writable mappings of PTEs.
  541  */
  542 #define VMASST_TYPE_writable_pagetables  2
  543 
  544 /* x86/PAE guests: support PDPTs above 4GB. */
  545 #define VMASST_TYPE_pae_extended_cr3     3
  546 
  547 /*
  548  * x86 guests: Sane behaviour for virtual iopl
  549  *  - virtual iopl updated from do_iret() hypercalls.
  550  *  - virtual iopl reported in bounce frames.
  551  *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
  552  */
  553 #define VMASST_TYPE_architectural_iopl   4
  554 
  555 /*
  556  * All guests: activate update indicator in vcpu_runstate_info
  557  * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
  558  * vcpu_runstate_info during updates of the runstate information.
  559  */
  560 #define VMASST_TYPE_runstate_update_flag 5
  561 
  562 /*
  563  * x86/64 guests: strictly hide M2P from user mode.
  564  * This allows the guest to control respective hypervisor behavior:
  565  * - when not set, L4 tables get created with the respective slot blank,
  566  *   and whenever the L4 table gets used as a kernel one the missing
  567  *   mapping gets inserted,
  568  * - when set, L4 tables get created with the respective slot initialized
  569  *   as before, and whenever the L4 table gets used as a user one the
  570  *   mapping gets zapped.
  571  */
  572 #define VMASST_TYPE_m2p_strict           32
  573 
  574 #if __XEN_INTERFACE_VERSION__ < 0x00040600
  575 #define MAX_VMASST_TYPE                  3
  576 #endif
  577 
  578 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
  579 #define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
  580 
  581 /* DOMID_SELF is used in certain contexts to refer to oneself. */
  582 #define DOMID_SELF           xen_mk_uint(0x7FF0)
  583 
  584 /*
  585  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
  586  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
  587  * is useful to ensure that no mappings to the OS's own heap are accidentally
  588  * installed. (e.g., in Linux this could cause havoc as reference counts
  589  * aren't adjusted on the I/O-mapping code path).
  590  * This only makes sense as HYPERVISOR_mmu_update()'s and
  591  * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
  592  * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
  593  * otherwise it's only permitted if the caller is privileged.
  594  */
  595 #define DOMID_IO             xen_mk_uint(0x7FF1)
  596 
  597 /*
  598  * DOMID_XEN is used to allow privileged domains to map restricted parts of
  599  * Xen's heap space (e.g., the machine_to_phys table).
  600  * This only makes sense as
  601  * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
  602  *   HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
  603  * - with XENMAPSPACE_gmfn_foreign,
  604  * and is only permitted if the caller is privileged.
  605  */
  606 #define DOMID_XEN            xen_mk_uint(0x7FF2)
  607 
  608 /*
  609  * DOMID_COW is used as the owner of sharable pages */
  610 #define DOMID_COW            xen_mk_uint(0x7FF3)
  611 
  612 /* DOMID_INVALID is used to identify pages with unknown owner. */
  613 #define DOMID_INVALID        xen_mk_uint(0x7FF4)
  614 
  615 /* Idle domain. */
  616 #define DOMID_IDLE           xen_mk_uint(0x7FFF)
  617 
  618 /* Mask for valid domain id values */
  619 #define DOMID_MASK           xen_mk_uint(0x7FFF)
  620 
  621 #ifndef __ASSEMBLY__
  622 
  623 typedef uint16_t domid_t;
  624 
  625 /*
  626  * Send an array of these to HYPERVISOR_mmu_update().
  627  * NB. The fields are natural pointer/address size for this architecture.
  628  */
  629 struct mmu_update {
  630     uint64_t ptr;       /* Machine address of PTE. */
  631     uint64_t val;       /* New contents of PTE.    */
  632 };
  633 typedef struct mmu_update mmu_update_t;
  634 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
  635 
  636 /*
  637  * ` enum neg_errnoval
  638  * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
  639  * `                      uint32_t nr_calls);
  640  *
  641  * NB. The fields are logically the natural register size for this
  642  * architecture. In cases where xen_ulong_t is larger than this then
  643  * any unused bits in the upper portion must be zero.
  644  */
  645 struct multicall_entry {
  646     xen_ulong_t op, result;
  647     xen_ulong_t args[6];
  648 };
  649 typedef struct multicall_entry multicall_entry_t;
  650 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
  651 
  652 #if __XEN_INTERFACE_VERSION__ < 0x00040400
  653 /*
  654  * Event channel endpoints per domain (when using the 2-level ABI):
  655  *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
  656  */
  657 #define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
  658 #endif
  659 
  660 struct vcpu_time_info {
  661     /*
  662      * Updates to the following values are preceded and followed by an
  663      * increment of 'version'. The guest can therefore detect updates by
  664      * looking for changes to 'version'. If the least-significant bit of
  665      * the version number is set then an update is in progress and the guest
  666      * must wait to read a consistent set of values.
  667      * The correct way to interact with the version number is similar to
  668      * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
  669      */
  670     uint32_t version;
  671     uint32_t pad0;
  672     uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
  673     uint64_t system_time;     /* Time, in nanosecs, since boot.    */
  674     /*
  675      * Current system time:
  676      *   system_time +
  677      *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
  678      * CPU frequency (Hz):
  679      *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
  680      */
  681     uint32_t tsc_to_system_mul;
  682     int8_t   tsc_shift;
  683 #if __XEN_INTERFACE_VERSION__ > 0x040600
  684     uint8_t  flags;
  685     uint8_t  pad1[2];
  686 #else
  687     int8_t   pad1[3];
  688 #endif
  689 }; /* 32 bytes */
  690 typedef struct vcpu_time_info vcpu_time_info_t;
  691 
  692 #define XEN_PVCLOCK_TSC_STABLE_BIT     (1 << 0)
  693 #define XEN_PVCLOCK_GUEST_STOPPED      (1 << 1)
  694 
  695 struct vcpu_info {
  696     /*
  697      * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
  698      * a pending notification for a particular VCPU. It is then cleared
  699      * by the guest OS /before/ checking for pending work, thus avoiding
  700      * a set-and-check race. Note that the mask is only accessed by Xen
  701      * on the CPU that is currently hosting the VCPU. This means that the
  702      * pending and mask flags can be updated by the guest without special
  703      * synchronisation (i.e., no need for the x86 LOCK prefix).
  704      * This may seem suboptimal because if the pending flag is set by
  705      * a different CPU then an IPI may be scheduled even when the mask
  706      * is set. However, note:
  707      *  1. The task of 'interrupt holdoff' is covered by the per-event-
  708      *     channel mask bits. A 'noisy' event that is continually being
  709      *     triggered can be masked at source at this very precise
  710      *     granularity.
  711      *  2. The main purpose of the per-VCPU mask is therefore to restrict
  712      *     reentrant execution: whether for concurrency control, or to
  713      *     prevent unbounded stack usage. Whatever the purpose, we expect
  714      *     that the mask will be asserted only for short periods at a time,
  715      *     and so the likelihood of a 'spurious' IPI is suitably small.
  716      * The mask is read before making an event upcall to the guest: a
  717      * non-zero mask therefore guarantees that the VCPU will not receive
  718      * an upcall activation. The mask is cleared when the VCPU requests
  719      * to block: this avoids wakeup-waiting races.
  720      */
  721     uint8_t evtchn_upcall_pending;
  722 #ifdef XEN_HAVE_PV_UPCALL_MASK
  723     uint8_t evtchn_upcall_mask;
  724 #else /* XEN_HAVE_PV_UPCALL_MASK */
  725     uint8_t pad0;
  726 #endif /* XEN_HAVE_PV_UPCALL_MASK */
  727     xen_ulong_t evtchn_pending_sel;
  728     struct arch_vcpu_info arch;
  729     struct vcpu_time_info time;
  730 }; /* 64 bytes (x86) */
  731 #ifndef __XEN__
  732 typedef struct vcpu_info vcpu_info_t;
  733 #endif
  734 
  735 /*
  736  * `incontents 200 startofday_shared Start-of-day shared data structure
  737  * Xen/kernel shared data -- pointer provided in start_info.
  738  *
  739  * This structure is defined to be both smaller than a page, and the
  740  * only data on the shared page, but may vary in actual size even within
  741  * compatible Xen versions; guests should not rely on the size
  742  * of this structure remaining constant.
  743  */
  744 struct shared_info {
  745     struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
  746 
  747     /*
  748      * A domain can create "event channels" on which it can send and receive
  749      * asynchronous event notifications. There are three classes of event that
  750      * are delivered by this mechanism:
  751      *  1. Bi-directional inter- and intra-domain connections. Domains must
  752      *     arrange out-of-band to set up a connection (usually by allocating
  753      *     an unbound 'listener' port and avertising that via a storage service
  754      *     such as xenstore).
  755      *  2. Physical interrupts. A domain with suitable hardware-access
  756      *     privileges can bind an event-channel port to a physical interrupt
  757      *     source.
  758      *  3. Virtual interrupts ('events'). A domain can bind an event-channel
  759      *     port to a virtual interrupt source, such as the virtual-timer
  760      *     device or the emergency console.
  761      *
  762      * Event channels are addressed by a "port index". Each channel is
  763      * associated with two bits of information:
  764      *  1. PENDING -- notifies the domain that there is a pending notification
  765      *     to be processed. This bit is cleared by the guest.
  766      *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
  767      *     will cause an asynchronous upcall to be scheduled. This bit is only
  768      *     updated by the guest. It is read-only within Xen. If a channel
  769      *     becomes pending while the channel is masked then the 'edge' is lost
  770      *     (i.e., when the channel is unmasked, the guest must manually handle
  771      *     pending notifications as no upcall will be scheduled by Xen).
  772      *
  773      * To expedite scanning of pending notifications, any 0->1 pending
  774      * transition on an unmasked channel causes a corresponding bit in a
  775      * per-vcpu selector word to be set. Each bit in the selector covers a
  776      * 'C long' in the PENDING bitfield array.
  777      */
  778     xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
  779     xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
  780 
  781     /*
  782      * Wallclock time: updated by control software or RTC emulation.
  783      * Guests should base their gettimeofday() syscall on this
  784      * wallclock-base value.
  785      * The values of wc_sec and wc_nsec are offsets from the Unix epoch
  786      * adjusted by the domain's 'time offset' (in seconds) as set either
  787      * by XEN_DOMCTL_settimeoffset, or adjusted via a guest write to the
  788      * emulated RTC.
  789      */
  790     uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
  791     uint32_t wc_sec;
  792     uint32_t wc_nsec;
  793 #if !defined(__i386__)
  794     uint32_t wc_sec_hi;
  795 # define xen_wc_sec_hi wc_sec_hi
  796 #elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
  797 # define xen_wc_sec_hi arch.wc_sec_hi
  798 #endif
  799 
  800     struct arch_shared_info arch;
  801 
  802 };
  803 #ifndef __XEN__
  804 typedef struct shared_info shared_info_t;
  805 #endif
  806 
  807 /*
  808  * `incontents 200 startofday Start-of-day memory layout
  809  *
  810  *  1. The domain is started within contiguous virtual-memory region.
  811  *  2. The contiguous region ends on an aligned 4MB boundary.
  812  *  3. This the order of bootstrap elements in the initial virtual region:
  813  *      a. relocated kernel image
  814  *      b. initial ram disk              [mod_start, mod_len]
  815  *         (may be omitted)
  816  *      c. list of allocated page frames [mfn_list, nr_pages]
  817  *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
  818  *      d. start_info_t structure        [register rSI (x86)]
  819  *         in case of dom0 this page contains the console info, too
  820  *      e. unless dom0: xenstore ring page
  821  *      f. unless dom0: console ring page
  822  *      g. bootstrap page tables         [pt_base and CR3 (x86)]
  823  *      h. bootstrap stack               [register ESP (x86)]
  824  *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
  825  *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
  826  *     layout for the domain. In particular, the bootstrap virtual-memory
  827  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
  828  *  6. All bootstrap elements are mapped read-writable for the guest OS. The
  829  *     only exception is the bootstrap page table, which is mapped read-only.
  830  *  7. There is guaranteed to be at least 512kB padding after the final
  831  *     bootstrap element. If necessary, the bootstrap virtual region is
  832  *     extended by an extra 4MB to ensure this.
  833  *
  834  * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
  835  * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
  836  * to the start of the guest page tables (it was offset by two pages).
  837  * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
  838  * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
  839  * allocated in the order: 'first L1','first L2', 'first L3', so the offset
  840  * to the page table base is by two pages back. The initial domain if it is
  841  * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
  842  * pages preceding pt_base and mark them as reserved/unused.
  843  */
  844 #ifdef XEN_HAVE_PV_GUEST_ENTRY
  845 struct start_info {
  846     /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
  847     char magic[32];             /* "xen-<version>-<platform>".            */
  848     unsigned long nr_pages;     /* Total pages allocated to this domain.  */
  849     unsigned long shared_info;  /* MACHINE address of shared info struct. */
  850     uint32_t flags;             /* SIF_xxx flags.                         */
  851     xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
  852     uint32_t store_evtchn;      /* Event channel for store communication. */
  853     union {
  854         struct {
  855             xen_pfn_t mfn;      /* MACHINE page number of console page.   */
  856             uint32_t  evtchn;   /* Event channel for console page.        */
  857         } domU;
  858         struct {
  859             uint32_t info_off;  /* Offset of console_info struct.         */
  860             uint32_t info_size; /* Size of console_info struct from start.*/
  861         } dom0;
  862     } console;
  863     /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
  864     unsigned long pt_base;      /* VIRTUAL address of page directory.     */
  865     unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
  866     unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
  867     unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
  868                                 /* (PFN of pre-loaded module if           */
  869                                 /*  SIF_MOD_START_PFN set in flags).      */
  870     unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
  871 #define MAX_GUEST_CMDLINE 1024
  872     int8_t cmd_line[MAX_GUEST_CMDLINE];
  873     /* The pfn range here covers both page table and p->m table frames.   */
  874     unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
  875     unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
  876 };
  877 typedef struct start_info start_info_t;
  878 
  879 /* New console union for dom0 introduced in 0x00030203. */
  880 #if __XEN_INTERFACE_VERSION__ < 0x00030203
  881 #define console_mfn    console.domU.mfn
  882 #define console_evtchn console.domU.evtchn
  883 #endif
  884 #endif /* XEN_HAVE_PV_GUEST_ENTRY */
  885 
  886 /* These flags are passed in the 'flags' field of start_info_t. */
  887 #define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
  888 #define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
  889 #define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
  890 #define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
  891 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
  892                                    /* P->M making the 3 level tree obsolete? */
  893 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
  894 
  895 /*
  896  * A multiboot module is a package containing modules very similar to a
  897  * multiboot module array. The only differences are:
  898  * - the array of module descriptors is by convention simply at the beginning
  899  *   of the multiboot module,
  900  * - addresses in the module descriptors are based on the beginning of the
  901  *   multiboot module,
  902  * - the number of modules is determined by a termination descriptor that has
  903  *   mod_start == 0.
  904  *
  905  * This permits to both build it statically and reference it in a configuration
  906  * file, and let the PV guest easily rebase the addresses to virtual addresses
  907  * and at the same time count the number of modules.
  908  */
  909 struct xen_multiboot_mod_list
  910 {
  911     /* Address of first byte of the module */
  912     uint32_t mod_start;
  913     /* Address of last byte of the module (inclusive) */
  914     uint32_t mod_end;
  915     /* Address of zero-terminated command line */
  916     uint32_t cmdline;
  917     /* Unused, must be zero */
  918     uint32_t pad;
  919 };
  920 /*
  921  * `incontents 200 startofday_dom0_console Dom0_console
  922  *
  923  * The console structure in start_info.console.dom0
  924  *
  925  * This structure includes a variety of information required to
  926  * have a working VGA/VESA console.
  927  */
  928 typedef struct dom0_vga_console_info {
  929     uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
  930 #define XEN_VGATYPE_TEXT_MODE_3 0x03
  931 #define XEN_VGATYPE_VESA_LFB    0x23
  932 #define XEN_VGATYPE_EFI_LFB     0x70
  933 
  934     union {
  935         struct {
  936             /* Font height, in pixels. */
  937             uint16_t font_height;
  938             /* Cursor location (column, row). */
  939             uint16_t cursor_x, cursor_y;
  940             /* Number of rows and columns (dimensions in characters). */
  941             uint16_t rows, columns;
  942         } text_mode_3;
  943 
  944         struct {
  945             /* Width and height, in pixels. */
  946             uint16_t width, height;
  947             /* Bytes per scan line. */
  948             uint16_t bytes_per_line;
  949             /* Bits per pixel. */
  950             uint16_t bits_per_pixel;
  951             /* LFB physical address, and size (in units of 64kB). */
  952             uint32_t lfb_base;
  953             uint32_t lfb_size;
  954             /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
  955             uint8_t  red_pos, red_size;
  956             uint8_t  green_pos, green_size;
  957             uint8_t  blue_pos, blue_size;
  958             uint8_t  rsvd_pos, rsvd_size;
  959 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
  960             /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
  961             uint32_t gbl_caps;
  962             /* Mode attributes (offset 0x0, VESA command 0x4f01). */
  963             uint16_t mode_attrs;
  964             uint16_t pad;
  965 #endif
  966 #if __XEN_INTERFACE_VERSION__ >= 0x00040d00
  967             /* high 32 bits of lfb_base */
  968             uint32_t ext_lfb_base;
  969 #endif
  970         } vesa_lfb;
  971     } u;
  972 } dom0_vga_console_info_t;
  973 #define xen_vga_console_info dom0_vga_console_info
  974 #define xen_vga_console_info_t dom0_vga_console_info_t
  975 
  976 typedef uint8_t xen_domain_handle_t[16];
  977 
  978 __DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
  979 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
  980 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
  981 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
  982 
  983 typedef struct {
  984     uint8_t a[16];
  985 } xen_uuid_t;
  986 
  987 /*
  988  * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
  989  *                 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
  990  * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
  991  * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
  992  * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
  993  *
  994  * NB: This is compatible with Linux kernel and with libuuid, but it is not
  995  * compatible with Microsoft, as they use mixed-endian encoding (some
  996  * components are little-endian, some are big-endian).
  997  */
  998 #define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)            \
  999     {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF,                           \
 1000       ((a) >>  8) & 0xFF, ((a) >>  0) & 0xFF,                           \
 1001       ((b) >>  8) & 0xFF, ((b) >>  0) & 0xFF,                           \
 1002       ((c) >>  8) & 0xFF, ((c) >>  0) & 0xFF,                           \
 1003       ((d) >>  8) & 0xFF, ((d) >>  0) & 0xFF,                           \
 1004                 e1, e2, e3, e4, e5, e6}}
 1005 
 1006 #if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
 1007 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
 1008     ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
 1009 #else
 1010 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
 1011     XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
 1012 #endif /* __STDC_VERSION__ / __GNUC__ */
 1013 
 1014 #endif /* !__ASSEMBLY__ */
 1015 
 1016 /* Default definitions for macros used by domctl/sysctl. */
 1017 #if defined(__XEN__) || defined(__XEN_TOOLS__)
 1018 
 1019 #ifndef int64_aligned_t
 1020 #define int64_aligned_t int64_t
 1021 #endif
 1022 #ifndef uint64_aligned_t
 1023 #define uint64_aligned_t uint64_t
 1024 #endif
 1025 #ifndef XEN_GUEST_HANDLE_64
 1026 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
 1027 #endif
 1028 
 1029 #ifndef __ASSEMBLY__
 1030 struct xenctl_bitmap {
 1031     XEN_GUEST_HANDLE_64(uint8) bitmap;
 1032     uint32_t nr_bits;
 1033 };
 1034 #endif
 1035 
 1036 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
 1037 
 1038 #endif /* __XEN_PUBLIC_XEN_H__ */
 1039 
 1040 /*
 1041  * Local variables:
 1042  * mode: C
 1043  * c-file-style: "BSD"
 1044  * c-basic-offset: 4
 1045  * tab-width: 4
 1046  * indent-tabs-mode: nil
 1047  * End:
 1048  */

Cache object: b93590a3a7fc0c0b3cadd87f465f7349


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.