1 /******************************************************************************
2 * xen.h
3 *
4 * Guest OS interface to Xen.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Copyright (c) 2004, K A Fraser
25 */
26
27 #ifndef __XEN_PUBLIC_XEN_H__
28 #define __XEN_PUBLIC_XEN_H__
29
30 #include "xen-compat.h"
31
32 #if defined(__i386__) || defined(__x86_64__)
33 #include "arch-x86/xen.h"
34 #elif defined(__arm__) || defined (__aarch64__)
35 #include "arch-arm.h"
36 #else
37 #error "Unsupported architecture"
38 #endif
39
40 #ifndef __ASSEMBLY__
41 /* Guest handles for primitive C types. */
42 DEFINE_XEN_GUEST_HANDLE(char);
43 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
44 DEFINE_XEN_GUEST_HANDLE(int);
45 __DEFINE_XEN_GUEST_HANDLE(uint, unsigned int);
46 #if __XEN_INTERFACE_VERSION__ < 0x00040300
47 DEFINE_XEN_GUEST_HANDLE(long);
48 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
49 #endif
50 DEFINE_XEN_GUEST_HANDLE(void);
51
52 DEFINE_XEN_GUEST_HANDLE(uint64_t);
53 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
54 DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
55
56 /* Define a variable length array (depends on compiler). */
57 #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
58 #define XEN_FLEX_ARRAY_DIM
59 #elif defined(__GNUC__)
60 #define XEN_FLEX_ARRAY_DIM 0
61 #else
62 #define XEN_FLEX_ARRAY_DIM 1 /* variable size */
63 #endif
64
65 /* Turn a plain number into a C unsigned (long (long)) constant. */
66 #define __xen_mk_uint(x) x ## U
67 #define __xen_mk_ulong(x) x ## UL
68 #ifndef __xen_mk_ullong
69 # define __xen_mk_ullong(x) x ## ULL
70 #endif
71 #define xen_mk_uint(x) __xen_mk_uint(x)
72 #define xen_mk_ulong(x) __xen_mk_ulong(x)
73 #define xen_mk_ullong(x) __xen_mk_ullong(x)
74
75 #else
76
77 /* In assembly code we cannot use C numeric constant suffixes. */
78 #define xen_mk_uint(x) x
79 #define xen_mk_ulong(x) x
80 #define xen_mk_ullong(x) x
81
82 #endif
83
84 /*
85 * HYPERCALLS
86 */
87
88 /* `incontents 100 hcalls List of hypercalls
89 * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
90 */
91
92 #define __HYPERVISOR_set_trap_table 0
93 #define __HYPERVISOR_mmu_update 1
94 #define __HYPERVISOR_set_gdt 2
95 #define __HYPERVISOR_stack_switch 3
96 #define __HYPERVISOR_set_callbacks 4
97 #define __HYPERVISOR_fpu_taskswitch 5
98 #define __HYPERVISOR_sched_op_compat 6 /* compat since 0x00030101 */
99 #define __HYPERVISOR_platform_op 7
100 #define __HYPERVISOR_set_debugreg 8
101 #define __HYPERVISOR_get_debugreg 9
102 #define __HYPERVISOR_update_descriptor 10
103 #define __HYPERVISOR_memory_op 12
104 #define __HYPERVISOR_multicall 13
105 #define __HYPERVISOR_update_va_mapping 14
106 #define __HYPERVISOR_set_timer_op 15
107 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
108 #define __HYPERVISOR_xen_version 17
109 #define __HYPERVISOR_console_io 18
110 #define __HYPERVISOR_physdev_op_compat 19 /* compat since 0x00030202 */
111 #define __HYPERVISOR_grant_table_op 20
112 #define __HYPERVISOR_vm_assist 21
113 #define __HYPERVISOR_update_va_mapping_otherdomain 22
114 #define __HYPERVISOR_iret 23 /* x86 only */
115 #define __HYPERVISOR_vcpu_op 24
116 #define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
117 #define __HYPERVISOR_mmuext_op 26
118 #define __HYPERVISOR_xsm_op 27
119 #define __HYPERVISOR_nmi_op 28
120 #define __HYPERVISOR_sched_op 29
121 #define __HYPERVISOR_callback_op 30
122 #define __HYPERVISOR_xenoprof_op 31
123 #define __HYPERVISOR_event_channel_op 32
124 #define __HYPERVISOR_physdev_op 33
125 #define __HYPERVISOR_hvm_op 34
126 #define __HYPERVISOR_sysctl 35
127 #define __HYPERVISOR_domctl 36
128 #define __HYPERVISOR_kexec_op 37
129 #define __HYPERVISOR_tmem_op 38
130 #define __HYPERVISOR_argo_op 39
131 #define __HYPERVISOR_xenpmu_op 40
132 #define __HYPERVISOR_dm_op 41
133 #define __HYPERVISOR_hypfs_op 42
134
135 /* Architecture-specific hypercall definitions. */
136 #define __HYPERVISOR_arch_0 48
137 #define __HYPERVISOR_arch_1 49
138 #define __HYPERVISOR_arch_2 50
139 #define __HYPERVISOR_arch_3 51
140 #define __HYPERVISOR_arch_4 52
141 #define __HYPERVISOR_arch_5 53
142 #define __HYPERVISOR_arch_6 54
143 #define __HYPERVISOR_arch_7 55
144
145 /* ` } */
146
147 /*
148 * HYPERCALL COMPATIBILITY.
149 */
150
151 /* New sched_op hypercall introduced in 0x00030101. */
152 #if __XEN_INTERFACE_VERSION__ < 0x00030101
153 #undef __HYPERVISOR_sched_op
154 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
155 #endif
156
157 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
158 #if __XEN_INTERFACE_VERSION__ < 0x00030202
159 #undef __HYPERVISOR_event_channel_op
160 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
161 #undef __HYPERVISOR_physdev_op
162 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
163 #endif
164
165 /* New platform_op hypercall introduced in 0x00030204. */
166 #if __XEN_INTERFACE_VERSION__ < 0x00030204
167 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
168 #endif
169
170 /*
171 * VIRTUAL INTERRUPTS
172 *
173 * Virtual interrupts that a guest OS may receive from Xen.
174 *
175 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
176 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
177 * The latter can be allocated only once per guest: they must initially be
178 * allocated to VCPU0 but can subsequently be re-bound.
179 */
180 /* ` enum virq { */
181 #define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */
182 #define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */
183 #define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */
184 #define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */
185 #define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */
186 #define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */
187 #define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */
188 #define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */
189 #define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */
190 #define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occurred */
191 #define VIRQ_ARGO 11 /* G. Argo interdomain message notification */
192 #define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */
193 #define VIRQ_XENPMU 13 /* V. PMC interrupt */
194
195 /* Architecture-specific VIRQ definitions. */
196 #define VIRQ_ARCH_0 16
197 #define VIRQ_ARCH_1 17
198 #define VIRQ_ARCH_2 18
199 #define VIRQ_ARCH_3 19
200 #define VIRQ_ARCH_4 20
201 #define VIRQ_ARCH_5 21
202 #define VIRQ_ARCH_6 22
203 #define VIRQ_ARCH_7 23
204 /* ` } */
205
206 #define NR_VIRQS 24
207
208 /*
209 * ` enum neg_errnoval
210 * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
211 * ` unsigned count, unsigned *done_out,
212 * ` unsigned foreigndom)
213 * `
214 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
215 * @count is the length of the above array.
216 * @pdone is an output parameter indicating number of completed operations
217 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
218 * hypercall invocation. Can be DOMID_SELF.
219 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
220 * in this hypercall invocation. The value of this field
221 * (x) encodes the PFD as follows:
222 * x == 0 => PFD == DOMID_SELF
223 * x != 0 => PFD == x - 1
224 *
225 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
226 * -------------
227 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
228 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
229 * and the new table entry is valid/present, the mapped frame must belong to
230 * FD. If attempting to map an I/O page then the caller assumes the privilege
231 * of the FD.
232 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
233 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
234 * ptr[:2] -- Machine address of the page-table entry to modify.
235 * val -- Value to write.
236 *
237 * There also certain implicit requirements when using this hypercall. The
238 * pages that make up a pagetable must be mapped read-only in the guest.
239 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
240 * enforces this, and will disallow any pagetable update which will end up
241 * mapping pagetable page RW, and will disallow using any writable page as a
242 * pagetable. In practice it means that when constructing a page table for a
243 * process, thread, etc, we MUST be very dilligient in following these rules:
244 * 1). Start with top-level page (PGD or in Xen language: L4). Fill out
245 * the entries.
246 * 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
247 * or L2).
248 * 3). Start filling out the PTE table (L1) with the PTE entries. Once
249 * done, make sure to set each of those entries to RO (so writeable bit
250 * is unset). Once that has been completed, set the PMD (L2) for this
251 * PTE table as RO.
252 * 4). When completed with all of the PMD (L2) entries, and all of them have
253 * been set to RO, make sure to set RO the PUD (L3). Do the same
254 * operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
255 * 5). Now before you can use those pages (so setting the cr3), you MUST also
256 * pin them so that the hypervisor can verify the entries. This is done
257 * via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
258 * number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
259 * MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
260 * issued.
261 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
262 * instead use L3.
263 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
264 * hypercall. Also if so desired the OS can also try to write to the PTE
265 * and be trapped by the hypervisor (as the PTE entry is RO).
266 *
267 * To deallocate the pages, the operations are the reverse of the steps
268 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
269 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
270 *
271 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
272 * Updates an entry in the machine->pseudo-physical mapping table.
273 * ptr[:2] -- Machine address within the frame whose mapping to modify.
274 * The frame must belong to the FD, if one is specified.
275 * val -- Value to write into the mapping entry.
276 *
277 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
278 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
279 * with those in @val.
280 *
281 * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
282 * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
283 * page tables.
284 *
285 * @val is usually the machine frame number along with some attributes.
286 * The attributes by default follow the architecture defined bits. Meaning that
287 * if this is a X86_64 machine and four page table layout is used, the layout
288 * of val is:
289 * - 63 if set means No execute (NX)
290 * - 46-13 the machine frame number
291 * - 12 available for guest
292 * - 11 available for guest
293 * - 10 available for guest
294 * - 9 available for guest
295 * - 8 global
296 * - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
297 * - 6 dirty
298 * - 5 accessed
299 * - 4 page cached disabled
300 * - 3 page write through
301 * - 2 userspace accessible
302 * - 1 writeable
303 * - 0 present
304 *
305 * The one bits that does not fit with the default layout is the PAGE_PSE
306 * also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
307 * HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
308 * (or 2MB) instead of using the PAGE_PSE bit.
309 *
310 * The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
311 * using it as the Page Attribute Table (PAT) bit - for details on it please
312 * refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
313 * pages instead of using MTRRs.
314 *
315 * The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
316 * PAT4 PAT0
317 * +-----+-----+----+----+----+-----+----+----+
318 * | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux
319 * +-----+-----+----+----+----+-----+----+----+
320 * | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots)
321 * +-----+-----+----+----+----+-----+----+----+
322 * | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen
323 * +-----+-----+----+----+----+-----+----+----+
324 *
325 * The lookup of this index table translates to looking up
326 * Bit 7, Bit 4, and Bit 3 of val entry:
327 *
328 * PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
329 *
330 * If all bits are off, then we are using PAT0. If bit 3 turned on,
331 * then we are using PAT1, if bit 3 and bit 4, then PAT2..
332 *
333 * As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
334 * that if a guest that follows Linux's PAT setup and would like to set Write
335 * Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
336 * set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
337 * caching as:
338 *
339 * WB = none (so PAT0)
340 * WC = PWT (bit 3 on)
341 * UC = PWT | PCD (bit 3 and 4 are on).
342 *
343 * To make it work with Xen, it needs to translate the WC bit as so:
344 *
345 * PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
346 *
347 * And to translate back it would:
348 *
349 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
350 */
351 #define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */
352 #define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */
353 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
354 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA. */
355 /* val never translated. */
356
357 /*
358 * MMU EXTENDED OPERATIONS
359 *
360 * ` enum neg_errnoval
361 * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
362 * ` unsigned int count,
363 * ` unsigned int *pdone,
364 * ` unsigned int foreigndom)
365 */
366 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
367 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
368 * Where the FD has some effect, it is described below.
369 *
370 * cmd: MMUEXT_(UN)PIN_*_TABLE
371 * mfn: Machine frame number to be (un)pinned as a p.t. page.
372 * The frame must belong to the FD, if one is specified.
373 *
374 * cmd: MMUEXT_NEW_BASEPTR
375 * mfn: Machine frame number of new page-table base to install in MMU.
376 *
377 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
378 * mfn: Machine frame number of new page-table base to install in MMU
379 * when in user space.
380 *
381 * cmd: MMUEXT_TLB_FLUSH_LOCAL
382 * No additional arguments. Flushes local TLB.
383 *
384 * cmd: MMUEXT_INVLPG_LOCAL
385 * linear_addr: Linear address to be flushed from the local TLB.
386 *
387 * cmd: MMUEXT_TLB_FLUSH_MULTI
388 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
389 *
390 * cmd: MMUEXT_INVLPG_MULTI
391 * linear_addr: Linear address to be flushed.
392 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
393 *
394 * cmd: MMUEXT_TLB_FLUSH_ALL
395 * No additional arguments. Flushes all VCPUs' TLBs.
396 *
397 * cmd: MMUEXT_INVLPG_ALL
398 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
399 *
400 * cmd: MMUEXT_FLUSH_CACHE
401 * No additional arguments. Writes back and flushes cache contents.
402 *
403 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
404 * No additional arguments. Writes back and flushes cache contents
405 * on all CPUs in the system.
406 *
407 * cmd: MMUEXT_SET_LDT
408 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
409 * nr_ents: Number of entries in LDT.
410 *
411 * cmd: MMUEXT_CLEAR_PAGE
412 * mfn: Machine frame number to be cleared.
413 *
414 * cmd: MMUEXT_COPY_PAGE
415 * mfn: Machine frame number of the destination page.
416 * src_mfn: Machine frame number of the source page.
417 *
418 * cmd: MMUEXT_[UN]MARK_SUPER
419 * mfn: Machine frame number of head of superpage to be [un]marked.
420 */
421 /* ` enum mmuext_cmd { */
422 #define MMUEXT_PIN_L1_TABLE 0
423 #define MMUEXT_PIN_L2_TABLE 1
424 #define MMUEXT_PIN_L3_TABLE 2
425 #define MMUEXT_PIN_L4_TABLE 3
426 #define MMUEXT_UNPIN_TABLE 4
427 #define MMUEXT_NEW_BASEPTR 5
428 #define MMUEXT_TLB_FLUSH_LOCAL 6
429 #define MMUEXT_INVLPG_LOCAL 7
430 #define MMUEXT_TLB_FLUSH_MULTI 8
431 #define MMUEXT_INVLPG_MULTI 9
432 #define MMUEXT_TLB_FLUSH_ALL 10
433 #define MMUEXT_INVLPG_ALL 11
434 #define MMUEXT_FLUSH_CACHE 12
435 #define MMUEXT_SET_LDT 13
436 #define MMUEXT_NEW_USER_BASEPTR 15
437 #define MMUEXT_CLEAR_PAGE 16
438 #define MMUEXT_COPY_PAGE 17
439 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
440 #define MMUEXT_MARK_SUPER 19
441 #define MMUEXT_UNMARK_SUPER 20
442 /* ` } */
443
444 #ifndef __ASSEMBLY__
445 struct mmuext_op {
446 unsigned int cmd; /* => enum mmuext_cmd */
447 union {
448 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
449 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
450 xen_pfn_t mfn;
451 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
452 unsigned long linear_addr;
453 } arg1;
454 union {
455 /* SET_LDT */
456 unsigned int nr_ents;
457 /* TLB_FLUSH_MULTI, INVLPG_MULTI */
458 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
459 XEN_GUEST_HANDLE(const_void) vcpumask;
460 #else
461 const void *vcpumask;
462 #endif
463 /* COPY_PAGE */
464 xen_pfn_t src_mfn;
465 } arg2;
466 };
467 typedef struct mmuext_op mmuext_op_t;
468 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
469 #endif
470
471 /*
472 * ` enum neg_errnoval
473 * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
474 * ` enum uvm_flags flags)
475 * `
476 * ` enum neg_errnoval
477 * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
478 * ` enum uvm_flags flags,
479 * ` domid_t domid)
480 * `
481 * ` @va: The virtual address whose mapping we want to change
482 * ` @val: The new page table entry, must contain a machine address
483 * ` @flags: Control TLB flushes
484 */
485 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
486 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */
487 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */
488 /* ` enum uvm_flags { */
489 #define UVMF_NONE (xen_mk_ulong(0)<<0) /* No flushing at all. */
490 #define UVMF_TLB_FLUSH (xen_mk_ulong(1)<<0) /* Flush entire TLB(s). */
491 #define UVMF_INVLPG (xen_mk_ulong(2)<<0) /* Flush only one entry. */
492 #define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
493 #define UVMF_MULTI (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
494 #define UVMF_LOCAL (xen_mk_ulong(0)<<2) /* Flush local TLB. */
495 #define UVMF_ALL (xen_mk_ulong(1)<<2) /* Flush all TLBs. */
496 /* ` } */
497
498 /*
499 * ` int
500 * ` HYPERVISOR_console_io(unsigned int cmd,
501 * ` unsigned int count,
502 * ` char buffer[]);
503 *
504 * @cmd: Command (see below)
505 * @count: Size of the buffer to read/write
506 * @buffer: Pointer in the guest memory
507 *
508 * List of commands:
509 *
510 * * CONSOLEIO_write: Write the buffer to Xen console.
511 * For the hardware domain, all the characters in the buffer will
512 * be written. Characters will be printed directly to the console.
513 * For all the other domains, only the printable characters will be
514 * written. Characters may be buffered until a newline (i.e '\n') is
515 * found.
516 * @return 0 on success, otherwise return an error code.
517 * * CONSOLEIO_read: Attempts to read up to @count characters from Xen
518 * console. The maximum buffer size (i.e. @count) supported is 2GB.
519 * @return the number of characters read on success, otherwise return
520 * an error code.
521 */
522 #define CONSOLEIO_write 0
523 #define CONSOLEIO_read 1
524
525 /*
526 * Commands to HYPERVISOR_vm_assist().
527 */
528 #define VMASST_CMD_enable 0
529 #define VMASST_CMD_disable 1
530
531 /* x86/32 guests: simulate full 4GB segment limits. */
532 #define VMASST_TYPE_4gb_segments 0
533
534 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
535 #define VMASST_TYPE_4gb_segments_notify 1
536
537 /*
538 * x86 guests: support writes to bottom-level PTEs.
539 * NB1. Page-directory entries cannot be written.
540 * NB2. Guest must continue to remove all writable mappings of PTEs.
541 */
542 #define VMASST_TYPE_writable_pagetables 2
543
544 /* x86/PAE guests: support PDPTs above 4GB. */
545 #define VMASST_TYPE_pae_extended_cr3 3
546
547 /*
548 * x86 guests: Sane behaviour for virtual iopl
549 * - virtual iopl updated from do_iret() hypercalls.
550 * - virtual iopl reported in bounce frames.
551 * - guest kernels assumed to be level 0 for the purpose of iopl checks.
552 */
553 #define VMASST_TYPE_architectural_iopl 4
554
555 /*
556 * All guests: activate update indicator in vcpu_runstate_info
557 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
558 * vcpu_runstate_info during updates of the runstate information.
559 */
560 #define VMASST_TYPE_runstate_update_flag 5
561
562 /*
563 * x86/64 guests: strictly hide M2P from user mode.
564 * This allows the guest to control respective hypervisor behavior:
565 * - when not set, L4 tables get created with the respective slot blank,
566 * and whenever the L4 table gets used as a kernel one the missing
567 * mapping gets inserted,
568 * - when set, L4 tables get created with the respective slot initialized
569 * as before, and whenever the L4 table gets used as a user one the
570 * mapping gets zapped.
571 */
572 #define VMASST_TYPE_m2p_strict 32
573
574 #if __XEN_INTERFACE_VERSION__ < 0x00040600
575 #define MAX_VMASST_TYPE 3
576 #endif
577
578 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
579 #define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
580
581 /* DOMID_SELF is used in certain contexts to refer to oneself. */
582 #define DOMID_SELF xen_mk_uint(0x7FF0)
583
584 /*
585 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
586 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
587 * is useful to ensure that no mappings to the OS's own heap are accidentally
588 * installed. (e.g., in Linux this could cause havoc as reference counts
589 * aren't adjusted on the I/O-mapping code path).
590 * This only makes sense as HYPERVISOR_mmu_update()'s and
591 * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
592 * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
593 * otherwise it's only permitted if the caller is privileged.
594 */
595 #define DOMID_IO xen_mk_uint(0x7FF1)
596
597 /*
598 * DOMID_XEN is used to allow privileged domains to map restricted parts of
599 * Xen's heap space (e.g., the machine_to_phys table).
600 * This only makes sense as
601 * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
602 * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
603 * - with XENMAPSPACE_gmfn_foreign,
604 * and is only permitted if the caller is privileged.
605 */
606 #define DOMID_XEN xen_mk_uint(0x7FF2)
607
608 /*
609 * DOMID_COW is used as the owner of sharable pages */
610 #define DOMID_COW xen_mk_uint(0x7FF3)
611
612 /* DOMID_INVALID is used to identify pages with unknown owner. */
613 #define DOMID_INVALID xen_mk_uint(0x7FF4)
614
615 /* Idle domain. */
616 #define DOMID_IDLE xen_mk_uint(0x7FFF)
617
618 /* Mask for valid domain id values */
619 #define DOMID_MASK xen_mk_uint(0x7FFF)
620
621 #ifndef __ASSEMBLY__
622
623 typedef uint16_t domid_t;
624
625 /*
626 * Send an array of these to HYPERVISOR_mmu_update().
627 * NB. The fields are natural pointer/address size for this architecture.
628 */
629 struct mmu_update {
630 uint64_t ptr; /* Machine address of PTE. */
631 uint64_t val; /* New contents of PTE. */
632 };
633 typedef struct mmu_update mmu_update_t;
634 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
635
636 /*
637 * ` enum neg_errnoval
638 * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
639 * ` uint32_t nr_calls);
640 *
641 * NB. The fields are logically the natural register size for this
642 * architecture. In cases where xen_ulong_t is larger than this then
643 * any unused bits in the upper portion must be zero.
644 */
645 struct multicall_entry {
646 xen_ulong_t op, result;
647 xen_ulong_t args[6];
648 };
649 typedef struct multicall_entry multicall_entry_t;
650 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
651
652 #if __XEN_INTERFACE_VERSION__ < 0x00040400
653 /*
654 * Event channel endpoints per domain (when using the 2-level ABI):
655 * 1024 if a long is 32 bits; 4096 if a long is 64 bits.
656 */
657 #define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
658 #endif
659
660 struct vcpu_time_info {
661 /*
662 * Updates to the following values are preceded and followed by an
663 * increment of 'version'. The guest can therefore detect updates by
664 * looking for changes to 'version'. If the least-significant bit of
665 * the version number is set then an update is in progress and the guest
666 * must wait to read a consistent set of values.
667 * The correct way to interact with the version number is similar to
668 * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
669 */
670 uint32_t version;
671 uint32_t pad0;
672 uint64_t tsc_timestamp; /* TSC at last update of time vals. */
673 uint64_t system_time; /* Time, in nanosecs, since boot. */
674 /*
675 * Current system time:
676 * system_time +
677 * ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
678 * CPU frequency (Hz):
679 * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
680 */
681 uint32_t tsc_to_system_mul;
682 int8_t tsc_shift;
683 #if __XEN_INTERFACE_VERSION__ > 0x040600
684 uint8_t flags;
685 uint8_t pad1[2];
686 #else
687 int8_t pad1[3];
688 #endif
689 }; /* 32 bytes */
690 typedef struct vcpu_time_info vcpu_time_info_t;
691
692 #define XEN_PVCLOCK_TSC_STABLE_BIT (1 << 0)
693 #define XEN_PVCLOCK_GUEST_STOPPED (1 << 1)
694
695 struct vcpu_info {
696 /*
697 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
698 * a pending notification for a particular VCPU. It is then cleared
699 * by the guest OS /before/ checking for pending work, thus avoiding
700 * a set-and-check race. Note that the mask is only accessed by Xen
701 * on the CPU that is currently hosting the VCPU. This means that the
702 * pending and mask flags can be updated by the guest without special
703 * synchronisation (i.e., no need for the x86 LOCK prefix).
704 * This may seem suboptimal because if the pending flag is set by
705 * a different CPU then an IPI may be scheduled even when the mask
706 * is set. However, note:
707 * 1. The task of 'interrupt holdoff' is covered by the per-event-
708 * channel mask bits. A 'noisy' event that is continually being
709 * triggered can be masked at source at this very precise
710 * granularity.
711 * 2. The main purpose of the per-VCPU mask is therefore to restrict
712 * reentrant execution: whether for concurrency control, or to
713 * prevent unbounded stack usage. Whatever the purpose, we expect
714 * that the mask will be asserted only for short periods at a time,
715 * and so the likelihood of a 'spurious' IPI is suitably small.
716 * The mask is read before making an event upcall to the guest: a
717 * non-zero mask therefore guarantees that the VCPU will not receive
718 * an upcall activation. The mask is cleared when the VCPU requests
719 * to block: this avoids wakeup-waiting races.
720 */
721 uint8_t evtchn_upcall_pending;
722 #ifdef XEN_HAVE_PV_UPCALL_MASK
723 uint8_t evtchn_upcall_mask;
724 #else /* XEN_HAVE_PV_UPCALL_MASK */
725 uint8_t pad0;
726 #endif /* XEN_HAVE_PV_UPCALL_MASK */
727 xen_ulong_t evtchn_pending_sel;
728 struct arch_vcpu_info arch;
729 struct vcpu_time_info time;
730 }; /* 64 bytes (x86) */
731 #ifndef __XEN__
732 typedef struct vcpu_info vcpu_info_t;
733 #endif
734
735 /*
736 * `incontents 200 startofday_shared Start-of-day shared data structure
737 * Xen/kernel shared data -- pointer provided in start_info.
738 *
739 * This structure is defined to be both smaller than a page, and the
740 * only data on the shared page, but may vary in actual size even within
741 * compatible Xen versions; guests should not rely on the size
742 * of this structure remaining constant.
743 */
744 struct shared_info {
745 struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
746
747 /*
748 * A domain can create "event channels" on which it can send and receive
749 * asynchronous event notifications. There are three classes of event that
750 * are delivered by this mechanism:
751 * 1. Bi-directional inter- and intra-domain connections. Domains must
752 * arrange out-of-band to set up a connection (usually by allocating
753 * an unbound 'listener' port and avertising that via a storage service
754 * such as xenstore).
755 * 2. Physical interrupts. A domain with suitable hardware-access
756 * privileges can bind an event-channel port to a physical interrupt
757 * source.
758 * 3. Virtual interrupts ('events'). A domain can bind an event-channel
759 * port to a virtual interrupt source, such as the virtual-timer
760 * device or the emergency console.
761 *
762 * Event channels are addressed by a "port index". Each channel is
763 * associated with two bits of information:
764 * 1. PENDING -- notifies the domain that there is a pending notification
765 * to be processed. This bit is cleared by the guest.
766 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
767 * will cause an asynchronous upcall to be scheduled. This bit is only
768 * updated by the guest. It is read-only within Xen. If a channel
769 * becomes pending while the channel is masked then the 'edge' is lost
770 * (i.e., when the channel is unmasked, the guest must manually handle
771 * pending notifications as no upcall will be scheduled by Xen).
772 *
773 * To expedite scanning of pending notifications, any 0->1 pending
774 * transition on an unmasked channel causes a corresponding bit in a
775 * per-vcpu selector word to be set. Each bit in the selector covers a
776 * 'C long' in the PENDING bitfield array.
777 */
778 xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
779 xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
780
781 /*
782 * Wallclock time: updated by control software or RTC emulation.
783 * Guests should base their gettimeofday() syscall on this
784 * wallclock-base value.
785 * The values of wc_sec and wc_nsec are offsets from the Unix epoch
786 * adjusted by the domain's 'time offset' (in seconds) as set either
787 * by XEN_DOMCTL_settimeoffset, or adjusted via a guest write to the
788 * emulated RTC.
789 */
790 uint32_t wc_version; /* Version counter: see vcpu_time_info_t. */
791 uint32_t wc_sec;
792 uint32_t wc_nsec;
793 #if !defined(__i386__)
794 uint32_t wc_sec_hi;
795 # define xen_wc_sec_hi wc_sec_hi
796 #elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
797 # define xen_wc_sec_hi arch.wc_sec_hi
798 #endif
799
800 struct arch_shared_info arch;
801
802 };
803 #ifndef __XEN__
804 typedef struct shared_info shared_info_t;
805 #endif
806
807 /*
808 * `incontents 200 startofday Start-of-day memory layout
809 *
810 * 1. The domain is started within contiguous virtual-memory region.
811 * 2. The contiguous region ends on an aligned 4MB boundary.
812 * 3. This the order of bootstrap elements in the initial virtual region:
813 * a. relocated kernel image
814 * b. initial ram disk [mod_start, mod_len]
815 * (may be omitted)
816 * c. list of allocated page frames [mfn_list, nr_pages]
817 * (unless relocated due to XEN_ELFNOTE_INIT_P2M)
818 * d. start_info_t structure [register rSI (x86)]
819 * in case of dom0 this page contains the console info, too
820 * e. unless dom0: xenstore ring page
821 * f. unless dom0: console ring page
822 * g. bootstrap page tables [pt_base and CR3 (x86)]
823 * h. bootstrap stack [register ESP (x86)]
824 * 4. Bootstrap elements are packed together, but each is 4kB-aligned.
825 * 5. The list of page frames forms a contiguous 'pseudo-physical' memory
826 * layout for the domain. In particular, the bootstrap virtual-memory
827 * region is a 1:1 mapping to the first section of the pseudo-physical map.
828 * 6. All bootstrap elements are mapped read-writable for the guest OS. The
829 * only exception is the bootstrap page table, which is mapped read-only.
830 * 7. There is guaranteed to be at least 512kB padding after the final
831 * bootstrap element. If necessary, the bootstrap virtual region is
832 * extended by an extra 4MB to ensure this.
833 *
834 * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
835 * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
836 * to the start of the guest page tables (it was offset by two pages).
837 * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
838 * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
839 * allocated in the order: 'first L1','first L2', 'first L3', so the offset
840 * to the page table base is by two pages back. The initial domain if it is
841 * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
842 * pages preceding pt_base and mark them as reserved/unused.
843 */
844 #ifdef XEN_HAVE_PV_GUEST_ENTRY
845 struct start_info {
846 /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */
847 char magic[32]; /* "xen-<version>-<platform>". */
848 unsigned long nr_pages; /* Total pages allocated to this domain. */
849 unsigned long shared_info; /* MACHINE address of shared info struct. */
850 uint32_t flags; /* SIF_xxx flags. */
851 xen_pfn_t store_mfn; /* MACHINE page number of shared page. */
852 uint32_t store_evtchn; /* Event channel for store communication. */
853 union {
854 struct {
855 xen_pfn_t mfn; /* MACHINE page number of console page. */
856 uint32_t evtchn; /* Event channel for console page. */
857 } domU;
858 struct {
859 uint32_t info_off; /* Offset of console_info struct. */
860 uint32_t info_size; /* Size of console_info struct from start.*/
861 } dom0;
862 } console;
863 /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */
864 unsigned long pt_base; /* VIRTUAL address of page directory. */
865 unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */
866 unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
867 unsigned long mod_start; /* VIRTUAL address of pre-loaded module */
868 /* (PFN of pre-loaded module if */
869 /* SIF_MOD_START_PFN set in flags). */
870 unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
871 #define MAX_GUEST_CMDLINE 1024
872 int8_t cmd_line[MAX_GUEST_CMDLINE];
873 /* The pfn range here covers both page table and p->m table frames. */
874 unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */
875 unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */
876 };
877 typedef struct start_info start_info_t;
878
879 /* New console union for dom0 introduced in 0x00030203. */
880 #if __XEN_INTERFACE_VERSION__ < 0x00030203
881 #define console_mfn console.domU.mfn
882 #define console_evtchn console.domU.evtchn
883 #endif
884 #endif /* XEN_HAVE_PV_GUEST_ENTRY */
885
886 /* These flags are passed in the 'flags' field of start_info_t. */
887 #define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
888 #define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
889 #define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */
890 #define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */
891 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
892 /* P->M making the 3 level tree obsolete? */
893 #define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */
894
895 /*
896 * A multiboot module is a package containing modules very similar to a
897 * multiboot module array. The only differences are:
898 * - the array of module descriptors is by convention simply at the beginning
899 * of the multiboot module,
900 * - addresses in the module descriptors are based on the beginning of the
901 * multiboot module,
902 * - the number of modules is determined by a termination descriptor that has
903 * mod_start == 0.
904 *
905 * This permits to both build it statically and reference it in a configuration
906 * file, and let the PV guest easily rebase the addresses to virtual addresses
907 * and at the same time count the number of modules.
908 */
909 struct xen_multiboot_mod_list
910 {
911 /* Address of first byte of the module */
912 uint32_t mod_start;
913 /* Address of last byte of the module (inclusive) */
914 uint32_t mod_end;
915 /* Address of zero-terminated command line */
916 uint32_t cmdline;
917 /* Unused, must be zero */
918 uint32_t pad;
919 };
920 /*
921 * `incontents 200 startofday_dom0_console Dom0_console
922 *
923 * The console structure in start_info.console.dom0
924 *
925 * This structure includes a variety of information required to
926 * have a working VGA/VESA console.
927 */
928 typedef struct dom0_vga_console_info {
929 uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
930 #define XEN_VGATYPE_TEXT_MODE_3 0x03
931 #define XEN_VGATYPE_VESA_LFB 0x23
932 #define XEN_VGATYPE_EFI_LFB 0x70
933
934 union {
935 struct {
936 /* Font height, in pixels. */
937 uint16_t font_height;
938 /* Cursor location (column, row). */
939 uint16_t cursor_x, cursor_y;
940 /* Number of rows and columns (dimensions in characters). */
941 uint16_t rows, columns;
942 } text_mode_3;
943
944 struct {
945 /* Width and height, in pixels. */
946 uint16_t width, height;
947 /* Bytes per scan line. */
948 uint16_t bytes_per_line;
949 /* Bits per pixel. */
950 uint16_t bits_per_pixel;
951 /* LFB physical address, and size (in units of 64kB). */
952 uint32_t lfb_base;
953 uint32_t lfb_size;
954 /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
955 uint8_t red_pos, red_size;
956 uint8_t green_pos, green_size;
957 uint8_t blue_pos, blue_size;
958 uint8_t rsvd_pos, rsvd_size;
959 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
960 /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
961 uint32_t gbl_caps;
962 /* Mode attributes (offset 0x0, VESA command 0x4f01). */
963 uint16_t mode_attrs;
964 uint16_t pad;
965 #endif
966 #if __XEN_INTERFACE_VERSION__ >= 0x00040d00
967 /* high 32 bits of lfb_base */
968 uint32_t ext_lfb_base;
969 #endif
970 } vesa_lfb;
971 } u;
972 } dom0_vga_console_info_t;
973 #define xen_vga_console_info dom0_vga_console_info
974 #define xen_vga_console_info_t dom0_vga_console_info_t
975
976 typedef uint8_t xen_domain_handle_t[16];
977
978 __DEFINE_XEN_GUEST_HANDLE(uint8, uint8_t);
979 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
980 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
981 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
982
983 typedef struct {
984 uint8_t a[16];
985 } xen_uuid_t;
986
987 /*
988 * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
989 * 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
990 * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
991 * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
992 * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
993 *
994 * NB: This is compatible with Linux kernel and with libuuid, but it is not
995 * compatible with Microsoft, as they use mixed-endian encoding (some
996 * components are little-endian, some are big-endian).
997 */
998 #define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6) \
999 {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF, \
1000 ((a) >> 8) & 0xFF, ((a) >> 0) & 0xFF, \
1001 ((b) >> 8) & 0xFF, ((b) >> 0) & 0xFF, \
1002 ((c) >> 8) & 0xFF, ((c) >> 0) & 0xFF, \
1003 ((d) >> 8) & 0xFF, ((d) >> 0) & 0xFF, \
1004 e1, e2, e3, e4, e5, e6}}
1005
1006 #if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
1007 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6) \
1008 ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
1009 #else
1010 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6) \
1011 XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
1012 #endif /* __STDC_VERSION__ / __GNUC__ */
1013
1014 #endif /* !__ASSEMBLY__ */
1015
1016 /* Default definitions for macros used by domctl/sysctl. */
1017 #if defined(__XEN__) || defined(__XEN_TOOLS__)
1018
1019 #ifndef int64_aligned_t
1020 #define int64_aligned_t int64_t
1021 #endif
1022 #ifndef uint64_aligned_t
1023 #define uint64_aligned_t uint64_t
1024 #endif
1025 #ifndef XEN_GUEST_HANDLE_64
1026 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
1027 #endif
1028
1029 #ifndef __ASSEMBLY__
1030 struct xenctl_bitmap {
1031 XEN_GUEST_HANDLE_64(uint8) bitmap;
1032 uint32_t nr_bits;
1033 };
1034 #endif
1035
1036 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
1037
1038 #endif /* __XEN_PUBLIC_XEN_H__ */
1039
1040 /*
1041 * Local variables:
1042 * mode: C
1043 * c-file-style: "BSD"
1044 * c-basic-offset: 4
1045 * tab-width: 4
1046 * indent-tabs-mode: nil
1047 * End:
1048 */
Cache object: befd51d2b140517d28fb1852828e0542
|